Development of renewable thermosetting polymers based on grape seed oil derivatives
Caroline Gaglieri
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorRafael Turra Alarcon
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorRaquel Magri
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorMichael North
Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, York, UK
Contribution: Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Gilbert Bannach
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Correspondence
Gilbert Bannach, School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru 17033-260, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Funding acquisition (lead), Methodology (equal), Project administration (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorCaroline Gaglieri
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorRafael Turra Alarcon
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorRaquel Magri
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Contribution: Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorMichael North
Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, York, UK
Contribution: Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Gilbert Bannach
School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru, Brazil
Correspondence
Gilbert Bannach, School of Sciences, Chemistry Department, UNESP - São Paulo State University, Bauru 17033-260, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Funding acquisition (lead), Methodology (equal), Project administration (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorFunding information: IFSC-USP; CeRTEV – Center for Research, Technology, and Education in Vitreous Materials; CNPq, Grant/Award Number: 303247/2021-5; São Paulo Research Foundation (FAPESP, Grant/Award Numbers: 2013/07793-6, 2018/03460-6, 2021/02152-9; CAPES, Grant/Award Numbers: 011/2009, 024/2012
Abstract
The demand for polymeric materials increases year by year, and most of them are derived from nonrenewable sources, and their consume has been increasing year by year. Therefore, there is a demand for research on bioderived polymers that are viable to be produced on an industrial scale. Based on the lack of polymers produced exclusively using monomers derived from vegetable oils, this paper shows the syntheses of renewable thermosetting polymers derived exclusively from grape seed oil, which is a by-product from the wine and grape juice industries. After the evaluation of the effect of using or not catalyst, it was determined that increasing 1-methylimidazole amount in the monomer mixture provides the decreasing of parallel reactions. However, thermal and mechanical properties, as well as the crosslinking density of polymers do not change significantly using 1.0% or 5.0% of catalyst (the minimal amounts needed to favor the esterification). Based on the characterization, the final polymers are not favorable in applications that require high mechanical impacts. However, they would be excellent as coatings due to their elevated crosslinking density, hydrophobic properties and homogenous surface. In addition, based on the properties observed under UV-light, they can also be used as luminescent materials.
CONFLICT OF INTEREST
The authors declare no potential conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app52990-sup-0001-Supinfo.docxWord 2007 document , 1.7 MB | Appendix S1: Supporting Information. |
app52990-sup-0002-VideoS1.mp4MPEG-4 video, 3.6 MB | Video S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Plastic Europe. Plastic the Facts 2021. https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf. 2022.
- 2H. Sardon, A. P. Dove, Science 2018, 360, 380.
- 3C. K. Williams, G. L. Gregory, Nature 2021, 590, 391.
- 4R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, 3.
- 5A. Mtibe, M. P. Motloung, J. Bandyopadhyay, S. S. Ray, Macromol. Rapid Commun. 2021, 42, 2100130.
- 6S. Nanda, B. R. Patra, R. Patel, J. Bakos, A. K. Dalai, Env. Chem. Lett. 2022, 20, 379.
- 7J. Liu, S. Wang, Y. Peng, J. Zhu, W. Zhao, X. Liu, Progress Polym. Sci. 2021, 113, 101353.
- 8P. Fryn, K. A. Bogdanowicz, P. Krysiak, M. Marzec, A. Iwan, A. Januszko, Polymer 1867, 2019, 11.
- 9P. Fryn, S. Lalik, N. Górska, A. Iwan, M. Marzec, Materials 2021, 14, 1719.
- 10G. Rajeshkumar, S. A. Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, A. R. Anuf, J. Cleaner Prod. 2021, 30, 127483.
- 11K. K. Tremblay-Parrado, C. García-Astrain, L. Avérous, Green Chem. 2021, 23, 4296.
- 12P. M. Paraskar, M. S. Prabhudesai, V. M. Hatkar, R. D. Kulkarni, Prog. Org. Coatings. 2021, 156, 106267.
- 13C. Li, Y. Chen, Y. Zeng, Y. Wu, W. Liu, R. Qiu, Eur. Polym. J 2022, 162, 110923.
- 14C. Gaglieri, R. Alarcon, A. de Moura, R. Magri, L. da Silva-Filho, G. Bannach, J Braz Chem Soc 2021, 11, 2120.
- 15P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301.
- 16P. T. Anastas, J. B. Zimmerman, IEEE Eng. Manag. Rev. 2007, 35, 16.
10.1109/EMR.2007.4296421 Google Scholar
- 17Y. R. Ham, S. H. Kim, Y. J. Shin, D. H. Lee, M. Yang, J. H. Min, J. S. Shin, J. Ind. Eng. Chem. 2010, 16, 556.
- 18F. López-Barajas, L. F. Ramos-DeValle, S. Sánchez-Valdes, E. Ramírez-Vargas, G. Martínez-Colunga, A. B. Espinoza-Martínez, S. Flores-Gallardo, J. Mendez-Nonell, A. B. Morales-Cepeda, T. Lozano-Ramirez, F. I. Beltrán-Ramírez, Polym. Testing 2019, 73, 346.
- 19B. E. F. Ekbrant, A. L. Skov, A. E. Daugaard, Macromolecules 2021, 54, 4280.
- 20K. R. Hart, N. R. Sottos, S. R. White, Polymer 2015, 67, 174.
- 21R. Mustapha, A. R. Rahmat, R. Abdul Majid, S. N. H. Mustapha, Polym. Plast. Technol. Mater. 2019, 58, 1311.
- 22X. Liang, F. Tan, Y. Zhu, Front. Chem. 2021, 9. https://doi.org/10.3389/fchem.2021.647245
- 23D. Ryzhakov, G. Printz, B. Jacques, S. Messaoudi, F. Dumas, S. Dagorne, F. Le Bideau, Polym. Chem. 2021, 12, 2932.
- 24T. Kavalli, R. Wolf, S. Ozen, J. Lalevée, Eur. Polym. J. 2022, 166, 111031.
- 25A. I. Barabanova, B. V. Lokshin, E. P. Kharitonova, E. S. Afanasyev, A. A. Askadskii, O. E. Philippova, Polymer 2019, 178, 121590.
- 26M. D. Shafiq, H. Ismail, Iran. Polym. J. 2021, 30, 547.
- 27R. Dinu, N. Briand, A. Mija, ACS Sustain. Chem. Eng. 2021, 9, 15641.
- 28A. Todorovic, K. Resch-Fauster, A. R. Mahendran, G. Oreski, W. Kern, J. Appl. Polym. Sci. 2020, 138, 50239.
- 29F. Mustata, N. Tudorachi, Ind. Crops Prod. 2021, 159, 113087.
- 30A. J. Clark, A. H. Ross, S. A. F. Bon, J. Polym. Environ. 2016, 25, 1.
- 31V. Fombuena, R. Petrucci, F. Dominici, A. Jordá-Vilaplana, N. Montanes, L. Torre, Polymers 2019, 11, 301.
- 32M. B. Hegde, K. N. S. Mohana, K. Rajitha, A. M. Madhusudhana, Prog. Org. Coat. 2021, 159, 106399.
- 33M. D. Samper, J. M. Ferri, A. Carbonell-Verdu, R. Balart, O. Fenollar, Express Polym. Lett. 2019, 13, 407.
- 34F. Dominici, M. D. Samper, A. Carbonell-Verdu, F. Luzi, J. López-Martínez, L. Torre, D. Puglia, Materials 2020, 13, 600.
- 35 Sigma-Aldrich. 1-Methylimidazole. 2022. https://www.sigmaaldrich.com/BR/pt/product/aldrich/m50834.
- 36 Sigma-Aldrich. 2-Methylimidazole. 2022. https://www.sigmaaldrich.com/BR/pt/product/aldrich/m50850.
- 37C. di Mauro, T.-N. Tran, A. Graillot, A. Mija, ACS Sustain. Chem. Eng. 2020, 8, 7690.
- 38T.-N. Tran, C. D. Mauro, A. Graillot, A. Mija, Macromolecules 2020, 53, 2526.
- 39G. Falco, N. Sbirrazzuoli, A. Mija, Mater. Today Commun. 2019, 21, 100683.
- 40F. I. Altuna, C. C. Riccardi, D. C. Marín Quintero, R. A. Ruseckaite, P. M. Stefani, Int. J. Polym. Sci. 2019, 2019, 1.
- 41K. Leena, P. B. Soumyamol, M. Baby, S. Suraj, R. Rajeev, D. S. Mohan, J. Therm. Anal. Calorim. 2017, 130, 1053.
- 42A. R. Mahendran, G. Wuzella, A. Kandelbauer, N. Aust, J. Therm. Anal. Calorim. 2011, 107, 989.
- 43G. Couture, L. Granado, F. Fanget, B. Boutevin, S. Caillol, Molecules 2018, 23, 2739.
- 44A. Marotta, N. Faggio, V. Ambrogi, P. Cerruti, G. Gentile, A. Mija, Biomacromolecules 2019, 20, 3831.
- 45S. Kumar, S. K. Samal, S. Mohanty, S. K. Nayak, Ind. Eng. Chem. Res. 2017, 56, 687.
- 46A. Paramarta, D. C. Webster, React. Funct. Polym. 2016, 105, 140.
- 47C. Gaglieri, A. de Moura, R. T. Alarcon, R. Magri, G. Bannach, J. Therm. Anal. Calorim. 2022, 147, 9095.
- 48A. N. Mauri, C. C. Riccardi, J. Appl. Polym. Sci. 2002, 85, 2342.
- 49W. H. Park, J. K. Lee, K. J. Kwon, Polym. J. 1996, 28, 407.
- 50J. Dong, B. Liu, H. Ding, J. Shi, N. Liu, B. Dai, I. Kim, Polym. Chem. 2020, 11, 7524.
- 51C. Di Mauro, S. Malburet, A. Genua, A. Graillot, A. Mija, Biomacromolecules 2020, 21, 3923.
- 52R. T. Alarcon, C. Gaglieri, G. C. Santos, A. C. Moralles, N. H. Morgon, A. R. Souza, G. Bannach, ChemistrySelect 2021, 6, 7838.
- 53C. Noè, L. Iannucci, S. Malburet, A. Graillot, M. Sangermano, S. Grassini, Macromol. Mater. Eng. 2021, 306, 2100029.
- 54E. Hernández, Mosiewicki, A. Mirna, E. Marcovich Norma, Eur. J. Lipid Sci. Technol. 2020, 122, 2000182.
- 55F. Pawlak, M. Aldas, J. López-Martínez, M. D. Samper, Polymers 2019, 11, 1514.
- 56X. Liu, X. Yang, S. Wang, S. Wang, Z. Wang, S. Liu, X. Xu, H. Liu, Z. Song, ACS Sustain. Chem. Eng. 2021, 9, 4175.