Exploiting mono- and hybrid nanocomposite materials for fused filament fabrication with acrylonitrile butadiene styrene as polymer matrix
Daniel V. A. Ceretti
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (equal), Investigation (lead), Methodology (equal), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorRudinei Fiorio
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (supporting), Methodology (equal)
Search for more papers by this authorTom Van Waeleghem
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorArne Desmet
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorBauke Florizoone
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorLudwig Cardon
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (equal), Funding acquisition (lead), Investigation (supporting), Methodology (equal), Resources (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Dagmar R. D'hooge
Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Correspondence
Dagmar R. D'hooge, Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 70A, Zwijnaarde 9052, Ghent 9000 Belgium.
Email: [email protected]
Contribution: Conceptualization (equal), Investigation (supporting), Methodology (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorDaniel V. A. Ceretti
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (equal), Investigation (lead), Methodology (equal), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorRudinei Fiorio
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (supporting), Methodology (equal)
Search for more papers by this authorTom Van Waeleghem
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorArne Desmet
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorBauke Florizoone
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorLudwig Cardon
Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Contribution: Conceptualization (equal), Funding acquisition (lead), Investigation (supporting), Methodology (equal), Resources (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Dagmar R. D'hooge
Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
Correspondence
Dagmar R. D'hooge, Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 70A, Zwijnaarde 9052, Ghent 9000 Belgium.
Email: [email protected]
Contribution: Conceptualization (equal), Investigation (supporting), Methodology (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorFunding information: Bijzonder Onderzoeksfonds UGent, Grant/Award Number: BOF.GOA.2018.0002.03
Abstract
Acrylonitrile butadiene styrene (ABS) based polymeric composites consisting of mono- and hybrid nano-compounds, that is, graphene nanoplatelets (GNP's), multi-walled carbon nanotubes (CNT's), and titanium dioxide (TiO2), are studied for fused filament fabrication (FFF). Rheological analysis in a screening step reveals that nanocomposites containing CNT result in a better nano-filler dispersion within the matrix and enhanced matrix interaction. The addition of GNP and TiO2 leads to a better coalescence between the deposited filaments. For the actual FFF specimens, emphasis is on the tensile, flexural and impact properties as well as the void content. It is shown that the joint addition of GNP, CNT, and TiO2 gives rise to a remarkable synergistic effect, leading to an improved dispersion and an increased tensile modulus and strength of 3D printed ABS by 16 and 20%. Decreasing the layer thickness increases the mechanical properties of the materials, while the printing temperature does not lead to major variations of the mechanical properties, due to a dominant effect of the addition of nanoparticles. It is also shown that for well-designed composites the slower sintering and higher void content is overruled by the reinforcement effect.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1A. Cano-Vicent, M. M. Tambuwala, S. S. Hassan, D. Barh, A. A. A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Addit. Manuf. 2021, 47, 102378. https://doi.org/10.1016/j.addma.2021.102378
- 2P. K. Penumakala, J. Santo, A. Thomas, Composites, Part B 2020, 201, 108336.
- 3M. Lalegani Dezaki, M. K. A. Mohd Ariffin, S. Hatami, Rapid Prototyp. J. 2021, 27, 562.
- 4S. Wang, L. Daelemans, D. R. D'hooge, L. Couck, W. Van Den Broeck, P. Cornillie, M. Gou, K. De Clerck, L. Cardon, Composites, Part B 2021, 210, 108613.
- 5T. Van Waeleghem, F. H. Marchesini, L. Cardon, D. R. D'hooge, J. Manuf. Process 2022, 77, 138.
- 6A. La Gala, R. Fiorio, D. V. A. Ceretti, M. Erkoç, L. Cardon, D. R. D'hooge, Materials 2021, 14, 5566.
- 7Y. Tao, F. Kong, Z. Li, J. Zhang, X. Zhao, Q. Yin, D. Xing, P. Li, J. Mater. Res. Technol. 2021, 15, 4860.
- 8J. E. Seppala, S. Hoon Han, K. E. Hillgartner, C. S. Davis, K. B. Migler, Soft Matter 2017, 13, 6761.
- 9T. J. Coogan, D. O. Kazmer, Addit. Manuf. 2020, 35, 101368.
- 10P. K. Gurrala, S. P. Regalla, Virtual Phys. Prototyping 2014, 9, 141.
10.1080/17452759.2014.913400 Google Scholar
- 11E. Fernandez, D. A. Ceretti, S. Wang, Y. Jiang, J. Zhang, D. R. D'hooge, L. Cardon, Plast. Rubber Compos. 2020, 0, 1.
- 12Q. Sun, Rapid Prototyping J. 2008, 2, 72.
- 13X. Gao, S. Qi, X. Kuang, Y. Su, J. Li, D. Wang, Addit. Manuf. 2021, 37, 101658.
- 14T. J. Coogan, D. O. Kazmer, J. Rheol. 2019, 63, 655.
- 15F. L. Figueira, Y. Y. Wu, Y. N. Zhou, Z. H. Luo, P. H. M. Van Steenberge, D. R. D'Hooge, React. Chem. Eng. 2021, 6, 640.
- 16V. E. Dreval, G. B. Vasil'ev, E. K. Borisenkova, V. G. Kulichikhin, Polym. Sci. - Ser. A 2006, 48, 338.
- 17F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey, Macromolecules 2004, 37, 9048.
- 18X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, Composites, Part B 2017, 110, 442.
- 19M. Ahmadifar, K. Benfriha, M. Shirinbayan, A. Tcharkhtchi, Appl. Compos. Mater. 2021, 28, 1335.
- 20U. Szeluga, B. Kumanek, B. Trzebicka, Compos. Part A Appl. Sci. Manuf. 2015, 73, 204.
- 21Q. Waheed, A. N. Khan, R. Jan, Polymer 2016, 97, 496.
- 22L. Duan, M. Spoerk, T. Wieme, P. Cornillie, H. Xia, J. Zhang, L. Cardon, D. R. D'hooge, Compos. Sci. Technol. 2019, 171, 78.
- 23L. Duan, D. R. D'hooge, L. Cardon, Prog. Mater. Sci. 2020, 114, 100617.
- 24J. Jyoti, S. R. Dhakate, B. P. Singh, Composites, Part B 2018, 154, 337.
- 25S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhauf, F. A. Nüesch, B. T. T. Chu, Carbon N. Y. 2012, 50, 5380.
- 26L. Yue, G. Pircheraghi, S. A. Monemian, I. Manas-Zloczower, Carbon N. Y. 2014, 78, 268.
- 27S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. M. Ma, S. M. Li, Y. S. Wang, Carbon N. Y. 2011, 49, 793.
- 28S. M. Zhang, L. Lin, H. Deng, X. Gao, E. Bilotti, T. Peijs, Q. Zhang, Q. Fu, Express Polym. Lett. 2012, 6, 159.
- 29Y. Sun, H. Bao, Z. X. Guo, J. Yu, Macromolecules 2009, 42, 459.
- 30H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 2016, 8, 12977.
- 31E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, T. Peijs, Compos. Sci. Technol. 2013, 74, 85.
- 32G. Spinelli, R. Kotsilkova, E. Ivanov, I. Petrova-Doycheva, D. Menseidov, V. Georgiev, R. Di Maio, C. Silvestre, Nanomaterials 2020, 10, 10.3390/nano10010035.
- 33S. Dul, L. G. Ecco, A. Pegoretti, L. Fambri, Polymers 2020, 12, 10.3390/POLYM12010101.
- 34D. C. Montgomery, Design and Analysis of Experiments, 5th ed., John Wiley & Sons, New York, NY 2001.
- 35A. Zosel, Rheol. Acta 1972, 11, 229.
- 36H. Münstedt, Polym. Eng. Sci. 1981, 21, 259.
- 37M. Van Gurp, J. Palmen, Rheol. Bull. 1998, 6, 5.
- 38J. M. Dealy, R. G. Larson, Structure and Rheology of Molten Polymers, Hanser Publications, Munich 2006.
10.3139/9783446412811 Google Scholar
- 39Y. Aoki, Macromolecules 1987, 20, 2208.
- 40C. Gao, S. Zhang, F. Wang, B. Wen, C. Han, Y. Ding, M. Yang, ACS Appl. Mater. Interfaces 2014, 6, 12252.
- 41J. Canales, M. E. Muñoz, M. Fernández, A. Santamaría, Compos. Part A Appl. Sci. Manuf. 2016, 84, 9.
- 42C. Serrano, M. L. Cerrada, M. Fernández-García, J. Ressia, E. M. Vallés, Eur. Polym. J. 2012, 48, 586.
- 43S. K. Sukumaran, T. Kobayashi, S. Takeda, A. Khosla, H. Furukawa, M. Sugimoto, J. Electrochem. Soc. 2019, 166, B3091.
- 44C. McClory, T. McNally, M. Baxendale, P. Pötschke, W. Blau, M. Ruether, Eur. Polym. J. 2010, 46, 854.
- 45A. K. Kota, B. H. Cipriano, M. K. Duesterberg, A. L. Gershon, D. Powell, S. R. Raghavan, H. A. Bruck, Macromolecules 2007, 40, 7400.
- 46A. Rostami, H. Nazockdast, M. Karimi, RSC Adv. 2016, 6, 49747.
- 47A. Manap, S. Mahalingam, R. Vaithylingam, H. Abdullah, Polym. Bull. 2021, 78, 5815.
- 48A. Kumar, K. Kumar, P. K. Ghosh, K. L. Yadav, Ultrason. Sonochem. 2018, 41, 37.
- 49W. Lertwimolnun, B. Vergnes, Polymer 2005, 46, 3462.
- 50H. Zhang, M. Zhao, Z. X. Huang, J. P. Qu, Ind. Eng. Chem. Res. 2020, 59, 18887.
- 51J. P. Kruth, G. Levy, F. Klocke, T. H. C. Childs, CIRP Ann. 2007, 56, 730.
- 52S. Berretta, Y. Wang, R. Davies, O. R. Ghita, J. Mater. Sci. 2016, 51, 4778.
- 53L. Benedetti, B. Brulé, N. Decraemer, K. E. Evans, O. Ghita, Powder Technol. 2019, 342, 917.
- 54C. T. Bellehumeur, M. K. Bisaria, J. Vlachopoulos, Polym. Eng. Sci. 1996, 36, 2198.
- 55T. Batakliev, V. Georgiev, V. Angelov, E. Ivanov, C. Kalupgian, P. A. R. Muñoz, G. J. M. Fechine, R. J. E. Andrade, R. Kotsilkova, J. Mater. Eng. Perform. 2021, 30, 3822.
- 56W. K. Wang, J. J. Chen, X. Zhang, Y. X. Huang, W. W. Li, H. Q. Yu, Sci. Rep. 2016, 6, 1.
- 57Z. Wang, J. Wang, M. Li, K. Sun, C. J. Liu, Sci. Rep. 2014, 4, 4.
- 58T. Batakliev, I. Petrova-Doycheva, V. Angelov, V. Georgiev, E. Ivanov, R. Kotsilkova, M. Casa, C. Cirillo, R. Adami, M. Sarno, P. Ciambelli, Appl. Sci. 2019, 9, doi:10.3390/app9030469.
- 59M. R. Skorski, J. M. Esenther, Z. Ahmed, A. E. Miller, M. R. Hartings, Sci. Technol. Adv. Mater. 2016, 17, 89.
- 60M. H. Al-Saleh, B. A. Al-Saidi, R. M. Al-Zoubi, Polymer 2016, 89, 12.
- 61M. H. Al-Saleh, U. Sundararaj, J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 1356.
- 62D. R. D'Hooge, P. H. M. Van Steenberge, M. F. Reyniers, G. B. Marin, Prog. Polym. Sci. 2016, 58, 59.
- 63C. McIlroy, P. D. Olmsted, J. Rheol. 2017, 61, 379.
- 64M. Razavi-Nouri, A. M. Rezadoust, Z. Soheilpour, K. Garoosi, S. R. Ghaffarian, Polym. Compos. 2021, 42, 342.
- 65H. K. Sezer, O. Eren, J. Manuf. Process 2019, 37, 339.
- 66N. Vidakis, A. Maniadi, M. Petousis, M. Vamvakaki, G. Kenanakis, E. Koudoumas, J. Mater. Eng. Perform. 2020, 29, 1909.
- 67A. C. Abbott, G. P. Tandon, R. L. Bradford, H. Koerner, J. W. Baur, Addit. Manuf. 2018, 19, 29.
- 68V. E. Kuznetsov, A. N. Solonin, A. Tavitov, O. Urzhumtsev, A. Vakulik, Rapid Prototyp. J. 2020, 26, 107.
- 69K. Abouzaid, S. Guessasma, S. Belhabib, D. Bassir, A. Chouaf, Eur. Polym. J. 2018, 108, 262.
- 70D. P. Cole, J. C. Riddick, H. M. Iftekhar Jaim, K. E. Strawhecker, N. E. Zander, J. Appl. Polym. Sci. 2016, 133, 1.
- 71J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, Mater. Des. 2017, 124, 143.
- 72A. R. Torrado, C. M. Shemelya, J. D. English, Y. Lin, R. B. Wicker, D. A. Roberson, Addit. Manuf. 2015, 6, 16.