Composite mixed matrix membranes incorporating microporous carbon molecular sieve as filler in polyethersulfone for CO2/CH4 separation
Mohamed Janshir Bin Gulam Mohamed
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hafiz Abdul Mannan
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Correspondence to: H. A. Mannan (E-mail: [email protected]) and H. Mukhtar (E-mail: [email protected])Search for more papers by this authorRizwan Nasir
Department of Chemical Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorDzeti Farhah Mohshim
Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hilmi Mukhtar
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Correspondence to: H. A. Mannan (E-mail: [email protected]) and H. Mukhtar (E-mail: [email protected])Search for more papers by this authorAymn Abdulrahman
Department of Chemical Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorAnas Ahmed
Department of Industrial Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorMohamed Janshir Bin Gulam Mohamed
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hafiz Abdul Mannan
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Correspondence to: H. A. Mannan (E-mail: [email protected]) and H. Mukhtar (E-mail: [email protected])Search for more papers by this authorRizwan Nasir
Department of Chemical Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorDzeti Farhah Mohshim
Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hilmi Mukhtar
Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Correspondence to: H. A. Mannan (E-mail: [email protected]) and H. Mukhtar (E-mail: [email protected])Search for more papers by this authorAymn Abdulrahman
Department of Chemical Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorAnas Ahmed
Department of Industrial Engineering, University of Jeddah, Jeddah, 23890 Saudi Arabia
Search for more papers by this authorABSTRACT
Membrane technology has been considered a key factor for sustainable growth in high-efficiency gas separation. Current mixed matrix membranes (MMMs) technology is rising, but these membranes in the dense structure are having difficulties in operating at high pressures and scale up for commercialization. The purpose of this research is to synthesize composite MMMs (CMMMs) consisting of polyethersulfone (PES), carbon molecular sieve (CMS 1–5 wt %), and Novatex 2471 nonwoven fabric (support layer). The membranes' physical, chemical, and thermal properties were evaluated by different analytical equipment. The morphology of both PES and PES-CMS composite membranes had a porous and asymmetric structure, in which CMS was uniformly distributed in the polymer matrix. The thermal properties showed that the membranes were stable up to 350 °C with a single glass transition temperature. The functional groups in the membrane were confirmed by spectral analysis. The gas performance results showed that carbon dioxide permeance increased with increased CMS concentration and methane permeance decreased due to the hindering effect of CMS under similar operating conditions. The highest selectivity achieved was 12.774 using CMMM of 5 wt % of CMS at 10 bar, which on average was 137.80%, improved selectivity compared to pure PES membrane. The support layer was able to withstand high operating pressures and showed the ability to scale up. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48476.
REFERENCES
- 1Sridhar, S.; Smitha, B.; Aminabhavi, T. M. Sep. Purif. Rev. 2007, 36, 113.
- 2Spillman, R.; Sherwin, M. Chemtech. 1990, 20, 378.
- 3Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. J. Mater. Chem. A. 2013, 1, 10058.
- 4Dai, Z.; Ansaloni, L.; Deng, L. Green Energy Environ. 2016, 1, 102.
- 5Saedi, S.; Madaeni, S. S.; Arabi Shamsabadi, A.; Mottaghi, F. Sep. Purif. Technol. 2012, 99, 104.
- 6Sadrzadeh, M.; Amirilargani, M.; Shahidi, K.; Mohammadi, T. J. Membr. Sci. 2009, 342, 236.
- 7Lozano-Castello, D.; Alcaniz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A.; Zhu, W.; Kapteijn, F.; Moulijn, J. A. Carbon. 2005, 43, 1643.
- 8Goh, P.; Ismail, A.; Sanip, S.; Ng, B.; Aziz, M. Sep. Purif. Technol. 2011, 81, 243.
- 9Moore, T. T.; Mahajan, R.; Vu, D. Q.; Koros, W. J. AIChE J. 2004, 50, 311.
- 10Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A. A.; Pérez, A.; Rana, M. S. Sep. Purif. Technol. 2017, 188, 431.
- 11Jha, P.; Way, J. D. J. Membr. Sci. 2008, 324, 151.
- 12Vu, D. Q.; Koros, W. J.; Miller, S. J. J. Membr. Sci. 2003, 221, 233.
- 13Vu, D. Q.; Koros, W. J.; Miller, S. J. J. Membr. Sci. 2003, 211, 311.
- 14Vu, D. Q.; Koros, W. J.; Miller, S. J. Ind. Eng. Chem. Res. 2003, 42, 1064.
- 15Das, M.; Perry, J. D.; Koros, W. J. Ind. Eng. Chem. Res. 2010, 49, 9310.
- 16Suleman, M. S.; Lau, K.; Yeong, Y. Procedia Eng. 2016, 148, 176.
- 17Cong, H.; Radosz, M.; Towler, B. F.; Shen, Y. Sep. Purif. Technol. 2007, 55, 281.
- 18Kargari, A.; Arabi Shamsabadi, A.; Bahrami Babaheidari, M. Int. J. Hydrogen Energy, 2014, 39, 6588.
- 19Suleman, M. S.; Lau, K.; Yeong, Y. J. Appl. Polym. Sci. 2018, 135, 45650.
- 20Basu, S.; Cano-Odena, A.; Vankelecom, I. F. J. J. Membr. Sci. 2010, 362, 478.
- 21Li, T.; Pan, Y.; Peinemann, K.-V.; Lai, Z. J. Membr. Sci. 2013, 235, 425.
- 22Asghari, M.; Mosadegh, M.; Riasat Harami, H. Chem. Eng. Sci. 2018, 187, 67.
- 23Peng, F.; Lu, L.; Sun, H.; Wang, Y.; Liu, J.; Jiang, Z. Chem. Mater. 2005, 17, 6790.
- 24Peng, F.; Lu, L.; Sun, H.; Wang, Y.; Wu, H.; Jiang, Z. J. Membr. Sci. 2006, 275, 97.
- 25Kärger, J.; Ruthven, D., Diffusion in Zeolites and other Microporous Solids; John Wiley and Sons: New York, 1992.
- 26Nasir, R.; Mukhtar, H.; Man, Z.; Dutta, B. K.; Shaharun, M. S.; Abu Bakar, M. Z. J. Membr. Sci. 2015, 483, 84.
- 27Nasir, R.; Mukhtar, H.; Man, Z.; Shaharun, M. S.; Abu Bakar, M. Z. RSC Adv. 2015, 5, 60814.
- 28Paulsen, F. G.; Shojaie, S. S.; Krantz, W. B. J. Membr. Sci. 1994, 91, 265.
- 29Hung, W.-S.; Liang, J.-H.; Lecaros, R. L. G.; An, Q.-F.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Sep. Purif. Technol. 2017, 187, 443.
- 30Cui, A.; Ni, F.; Deng, S.; He, J.; Shen, F.; Yang, G.; Song, C.; Tian, D.; Long, L.; Zhang, J. RSC Adv. 2019, 9, 16839.
- 31Vatanpour, V.; Madaeni, S. S.; Khataee, A. R.; Salehi, E.; Zinadini, S.; Monfared, H. A. Desalination. 2012, 292, 19.
- 32Junaidi, M. U. M.; Leo, C. P.; Kamal, S. N. M.; Ahmad, A. L.; Chew, T. L. Dent. Tech. 2013, 112, 1.
- 33Ganesh, B.; Isloor, A. M.; Ismail, A. F. Desalination. 2013, 313, 199.
- 34Wei, W.; Xia, S.; Liu, G.; Gu, X.; Jin, W.; Xu, N. AIChE J. 2010, 56, 1584.
- 35Clarke, A. AIChE J. 2002, 48, 2149.
- 36Han, J.; Lee, W.; Choi, J. M.; Patel, R.; Min, B.-R. J. Membr. Sci. 2010, 351, 141.
- 37Iqbal, M.; Man, Z.; Mukhtar, H.; Dutta, B. K. J. Membr. Sci. 2008, 318, 167.
- 38Ordoñez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. J. Membr. Sci. 2010, 361, 28.
- 39Abdul Mannan, H.; Mukhtar, H.; Murugesan, T. Appl. Mech. Mater. 2014, 625, 172.
10.4028/www.scientific.net/AMM.625.172 Google Scholar
- 40Shahid, S.; Nijmeijer, K. J. Membr. Sci. 2014, 459, 33.
- 41Luo, J.; Guo, R.; Zhang, M.; Li, J. High Perform. Polym. 2016, 28, 1005.
- 42Pixton, M.; Paul, D.; Yampol, skii, Y. Relationships between Structure and Transport Properties for Polymers with Aromatic Backbones; CRC Press: Boca Raton, FL, 1994.
- 43Zornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F., Chem. Commun. 2011, 47, 9522.
- 44Rafizah, W.; Ismail, A. J. Membr. Sci. 2008, 307, 53.
- 45Wiryoatmojo, A. S.; Mukhtar, H.; Man, Z. Chemical, Biological and Environmental Engineering: Proceedings of the International Conference on CBEE; World Scientific Publishing: Singapore, 2009; Vol. 2009, p. 249.
10.1142/9789814295048_0052 Google Scholar
- 46Wiryoatmojo, A. S.; Mukhtar, H.; Man, Z. In Chemical, Biological and Environmental Engineering; World Scientific Publishing: Singapore, 2010.
- 47Baker, R. W. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, 2000.
- 48Robeson, L. M., J. Membr. Sci. 2008, 320, 390.
- 49Gunawan, T.; Rahayu, R. P.; Wijiyanti, R.; Salleh, W. N. W.; Widiastuti, N. Indones. J. Chem. 2019, 19, 650.
- 50Shin, H.; Chi, W. S.; Bae, S.; Kim, J. H.; Kim, J. J. Ind. Eng. Chem. 2017, 53, 127.
- 51Li, S.; Zhang, H.; Yu, S.; Hou, J.; Huang, S.; Liu, Y. Sep. Purif. Technol. 2019, 211, 252.