A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate
Quan Shi
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorNarendiran Vitchuli
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorLiwen Ji
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorJoshua Nowak
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909
Search for more papers by this authorMarian McCord
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorMohamed Bourham
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909
Search for more papers by this authorCorresponding Author
Xiangwu Zhang
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301===Search for more papers by this authorQuan Shi
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorNarendiran Vitchuli
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorLiwen Ji
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorJoshua Nowak
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909
Search for more papers by this authorMarian McCord
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Search for more papers by this authorMohamed Bourham
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909
Search for more papers by this authorCorresponding Author
Xiangwu Zhang
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301
Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301===Search for more papers by this authorAbstract
Porous Nylon 6 nanofibers were prepared using silica nanoparticles as the template. Firstly, Nylon 6/silica composite nanofibers were prepared as precursors by electrospinning Nylon 6 solutions containing different contents of silica nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the surface morphology and the inner structure of composite nanofibers; where it was found that silica nanoparticles were distributed both inside and on the surface of nanofibers. Analytical techniques [Fourier transform infrared (FTIR), differential scanning calorimetry, thermal gravimetric analysis (TGA), and wide-angle X-ray diffraction) were used to study the structure and properties of these composite nanofibers. The glass transition, melting, and crystallization processes of the fibers were affected by the addition of silica nanoparticles. Secondly, porous Nylon 6 nanofibers were obtained by removing silica nanoparticles via hydrofluoric acid treatment. The removal of silica nanoparticles was confirmed using FTIR and TGA tests. SEM and TEM observations revealed the formation of the porous structure in these nanofibers. After the formation of the porous structure, Brunauer–Emmett–Teller specific surface areas of nanofibers were increased as compared to solid Nylon 6 and composite nanofibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Li, D.; Xia, Y. Adv Mater 2004, 16, 1151.
- 2 Kotek, R. Polym Rev 2008, 48, 221.
- 3 Hagewood, J.; Wilkie, A. Nonwovens World 2003, 12, 69.
- 4 Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan N. C. Polymer 2001, 42, 261.
- 5 Frenot, A.; Chronakis, I. S. Curr Opin Colloid Interface Sci 2003, 8, 64.
- 6 Bellan, L. M.; Craighead, H. G. J Manuf Sci Eng-Trans ASME 2009, 131, 4.
- 7 Schreuder-Gibson, H.; Gibson, P.; Senecal, K.; Sennett, M.; Walker, J.; Yeomans, W.; Ziegler, D.; Tsai, P. P. J Adv Mater 2002, 34, 44.
- 8 Liao, S.; Li, B.; Ma, Z.; Wei, H.; Chan, C.; Ramakrishna, S. Biomed Mater 2006, 1, R45.
- 9 Boudriot, U.; Dersch, R.; Greiner, A.; Wendorff, J. H. Artif Organs 2006, 30, 785.
- 10 Michael, S.; Caren, R.; Nadine, R.; Florian, S.; Armido, S.; Andreas, G.; Joachim, H. W. Polymer 2007, 48, 5208.
- 11 Wang, X.; Drew, C.; Lee, S. H.; Senecal, K. J.; Kumar, J.; Samuelson, L. A. J Macromolecular Sci A 2002, 39, 1251.
- 12 Li, Z. Y.; Zhang, H. N.; Zheng, W.; Wang, W.; Huang, H. M.; Wang, C.; MacDiarmid, A. G.; Wei, Y. J Am Chem Soc 2008, 130, 5036.
- 13 Reneker, D. H.; Yarin, A. L.; Zussman, E.; Xu, H. Adv Appl Mech 2007, 41, 44.
- 14 Agarwal, S.; Wendorff, J. H.; Greiner, A. Polymer 2008, 49, 5603.
- 15 Schiffman, J. D.; Schauer, C. L. Polym Rev 2008, 48, 317.
- 16 Seema, A.; Andreas, G.; Joachin, H. W. Adv Funct Mater 2009, 19, 1.
- 17 Yang, D. Y.; Niu, X.; Liu, Y. Y.; Wang, Y.; Gu, X.; Song, L. S.; Zhao, R.; Ma, L. Y.; Shao, Y. M.; Jiang, X. Y. Adv Mater 2008, 20, 4770.
- 18 Sawicka, K. M.; Gouma, P. J Nanopart Res 2006, 8, 769.
- 19 Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. Compos Sci Technol 2003, 63, 2223.
- 20 Jie, B.; Yaoxian, L.; Meiye, L.; Junlong, G.; Xinmin, Z.; Shugang, W.; Chaoqun, Z.; Qingbiao, Y. Colloids Surf A Physicochem Eng Asp 2008, 318, 259.
- 21 Yongzhi, W.; Yaoxian, L.; Songtao, Y.; Guangliang, Z.; Dongmin, A.; Ce, W.; Qingbiao, Y.; Xuesi, C.; Xiabin, J.; Yen, W. Nanotechnology 2006, 17, 3304.
- 22 Pavan Kumar, V. S.; Jagadeesh Babu, V.; Raghuraman, G. K.; Dhamodharan, R.; Natarajan, T. S. J Appl Phys 2007, 101, 4.
- 23 Kim, H. W.; Lee, H. H.; Knowles, J. C. J Biomed Mater Res A 2006, 79, 643.
- 24 Hassan, M.; Mohammad, H.; Vinod, D.; Graham, B.; Justin, S.; Vijaya, R.; Xin, W.; Valery, K.; Shaik, J. Nanotechnology 2008, 19, 445702.
- 25 Zhao, C.; Zhang, P.; Lu, S.; He, J.; Wang, X. J Mater Sci 2007, 42, 9083.
- 26 Shao, C.; Kim, H.; Gong, J.; Lee, D. Nanotechnology 2002, 13, 635.
- 27 Jin, Y.; Yang, D. Y.; Kang, D. Y.; Jiang, X. Y. Langmuir 2010, 26, 1186.
- 28 Yi-zhang, C.; Zhan-peng, Z.; Jian, Y.; Zhao-Xia, G. J Polym Sci B Polym Phy 2009, 47, 1211.
- 29 Lim, J.-M.; Yi, G.-R.; Moon, J. H.; Heo, C.-J.; Yang, S.-M. Langmuir 2007, 23, 7981.
- 30 Liwen, J.; Carl, S.; Saad, A. K.; Xiangwu, Z.; Nanotechnology 2008, 19, 085605.
- 31 Michael, B.; Wolfgang, C.; Thomas, F.; Andreas, S.; Michael, H.; Martin, S.; Andreas, G.; Joachim H. W. Adv Mater 2001, 13, 70.
- 32 Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Macromolecules 2002, 35, 8456.
- 33 Zhang, L.; Hsieh, Y. Nanotechnology 2006, 17, 4416.
- 34 Mikhail, B.; Thomas, F.; Martin, S.; Andreas, G.; Joachim, H. W. Polym Eng Sci 2001, 41, 982.
- 35 Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Macromolecules 2003, 37, 573.
- 36 Gupta, A.; Saquing, C. D.; Afshari, M.; Tonelli, A. E.; Khan, S. A.; Kotek, R. Macromolecules 2008, 42, 709.
- 37 Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999, 40, 4585.
- 38 Arrighi, V.; McEwen, I. J.; Qian, H.; Serrano Prieto, M. B. Polymer 2003, 44, 6259.
- 39 Basic Characteristics of AEROSIL®, Degussa Technical bulletin Pigments Number 11, 2003.