Cryptomelane nanorods coated with Ni ion doped Birnessite polymorphs as bifunctional efficient catalyst for the oxygen evolution reaction and degradation of organic contaminants
Mustafa Ulvi Gürbüz
Department of Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
Contribution: Data curation (equal), Investigation (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Gökhan Elmacı
Department of Chemistry, School of Technical Sciences, Adıyaman University, Adıyaman, Turkey
Correspondence
Ali S. Ertürk, Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Gökhan Elmacı, Department of Chemistry, School of Technical Sciences, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorYajun Zhang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, China
Contribution: Formal analysis (equal)
Search for more papers by this authorXu Meng
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, China
Search for more papers by this authorCorresponding Author
Ali Serol Ertürk
Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
Correspondence
Ali S. Ertürk, Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Gökhan Elmacı, Department of Chemistry, School of Technical Sciences, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Project administration (equal), Software (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorMustafa Ulvi Gürbüz
Department of Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
Contribution: Data curation (equal), Investigation (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Gökhan Elmacı
Department of Chemistry, School of Technical Sciences, Adıyaman University, Adıyaman, Turkey
Correspondence
Ali S. Ertürk, Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Gökhan Elmacı, Department of Chemistry, School of Technical Sciences, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorYajun Zhang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, China
Contribution: Formal analysis (equal)
Search for more papers by this authorXu Meng
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, China
Search for more papers by this authorCorresponding Author
Ali Serol Ertürk
Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
Correspondence
Ali S. Ertürk, Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Gökhan Elmacı, Department of Chemistry, School of Technical Sciences, Adıyaman University, 02040 Adıyaman, Turkey.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Project administration (equal), Software (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorFunding information: The Scientific and Technological Research Council of Turkey (TUBITAK) for Postdoctoral Research Scholarship Program; Youth Innovation Promotion Association CAS, Grant/Award Number: 2018456; National Natural Science Foundation of China, Grant/Award Number: 21403256
Abstract
The intelligent design or development of dual-functional catalysts using non-precious metals especially for the oxygen evolution reaction (OER) in sustainable energy systems and degradation of organic pollutants is still a difficult and a significant challenge. Furthermore, the development of these catalysts is of great importance in terms of energy security and solution of the environmental problems. To meet these requirements, herein, we describe the synthesis of a Ni-ion doped Birnessite@Cryptomelane (Ni2+/B@Cr) hybrid structure as a bifunctional efficient catalyst for the OER in neutral media and degradation of dye pollutants. The Ni2+/B@Cr catalyst exhibited a sharp onset potential at 390 mV (vs. RHE) and achieved a current density of 1 mA cm−2 at a low ƞ of 430 mV with a Tafel slope of ~96 mV dec−1. The results of electrochemical impedance spectroscopy (EIS) studies indicated that Ni intercalation into birnessite layer and heterostructure of the hybrid electrocatalyst Ni2+/B@Cr increased the conductivity by lowering the resistance of charge transfer (Rct = 4.82 Ω) and oxygen evolution processes (ROER = 4.13 Ω). The durability assay identified Ni2+/B@Cr as stable electrocatalyst with 10% loss of activity after long-term stability tests (10 h, under 500-mV overpotential). In addition, the Ni2+/B@Cr achieved high (86.67 s−1 g−1) and rapid (173 s) catalytic performance for the reduction of methylene blue (MB). Overall, this paper presents a low-cost production strategy for the design of highly efficient bifunctional catalysts, offering boosted electrocatalytic and degradation performance for water oxidation and organic dye contamination, respectively.
CONFLICT OF INTEREST
Authors declare that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available because of privacy/ethical restrictions.
REFERENCES
- 1J. A. Turner, Science 2004, 305, 972.
- 2S. S. Penner, Energy 2006, 31, 33.
- 3R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, ACS Appl. Energy Mater. 2021, 4, 680.
- 4M. Masjedi-Arani, M. Salavati-Niasari, Int. J. Hydrogen Energy 2017, 42, 17184.
- 5S. Zhao, L. Yan, H. Luo, W. Mustain, H. Xu, Nano Energy 2018, 47, 172.
- 6M. A. Spencer, J. Mater. Sci. 2019, 54, 13045. https://doi.org/10.1007/s10853-019-03823-y
- 7J. Zhang, B. Sun, Y. Zhao, K. Kretschmer, G. Wang, Angew. Chem. Int. Ed. 2017, 56, 8505.
- 8L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y. W. Li, C. Shi, X. D. Wen, D. Ma, Nature 2017, 544, 80.
- 9J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, L. Jiang, Z. Wu, D. J. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, Nat. Commun. 2017, 8, 15938.
- 10Q. Xu, H. Li, F. Yue, L. Chi, J. Wang, New J. Chem. 2016, 40, 3032.
- 11Y. H. Fang, Z. P. Liu, J. Am. Chem. Soc. 2010, 132, 18214.
- 12M. Karpuraranjith, Y. Chen, B. Wang, J. Ramkumar, D. Yang, K. Srinivas, W. Wang, W. Zhang, R. Manigandan, J. Colloid Interface Sci. 2021, 592, 385.
- 13C. Zhang, M. Wang, L. Liu, X. Yang, X. Xu, Electrochem. Commun. 2013, 33, 131.
- 14J. Liu, D. Zhu, T. Ling, A. Vasileff, S. Z. Qiao, Nano Energy 2017, 40, 264.
- 15Y. Wu, F. Li, W. Chen, Q. Xiang, Y. Ma, H. Zhu, P. Tao, C. Song, W. Shang, T. Deng, J. Wu, Adv. Mater. 2018, 30, 1803151.
- 16X. An, Z. Shang, Y. Bai, H. Liu, J. Qu, ACS Sustain. Chem. Eng. 2019, 7, 19902.
- 17R. Monsef, M. Ghiyasiyan-Arani, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 2020, 61, 61. https://doi.org/10.1016/j.ultsonch.2019.104822
- 18K. Yang, Q. Sun, F. Xue, D. Lin, J. Hazard. Mater. 2011, 195, 124.
- 19S. Zinatloo-Ajabshir, M. S. Morassaei, M. Salavati-Niasari, Composites, Part B 2019, 167, 643.
- 20A. Lajevardi, M. Tavakkoli Yaraki, A. Masjedi, A. Nouri, M. Hossaini Sadr, J. Mol. Liq. 2019, 276, 371.
- 21V. Balakumar, J. W. Ryu, H. Kim, R. Manivannan, Y. A. Son, Ultrason. Sonochem. 2020, 62, 104870.
- 22R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Environ. Manage. 2019, 230, 266.
- 23Y. G. Kang, H. Yoon, C. S. Lee, E. J. Kim, Y. S. Chang, Water Res. 2019, 151, 413.
- 24B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai, Angew. Chem. Int. Ed. 2006, 45, 1390.
- 25M. I. Nandasiri, S. R. Jambovane, B. P. McGrail, H. T. Schaef, S. K. Nune, Coord. Chem. Rev. 2016, 311, 38.
- 26B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204.
- 27G. Liu, K. Wang, X. Gao, D. He, J. Li, Electrochim. Acta 2016, 211, 871.
- 28G. J. Hwang, B. M. Gil, C. H. Ryu, J. Ind. Eng. Chem. 2017, 48, 242.
- 29C. Mahala, M. D. Sharma, M. Basu, Electrochim. Acta 2018, 273, 462.
- 30S. Guan, W. Li, J. Ma, Y. Lei, Y. Zhu, Q. Huang, X. Dou, J. Ind. Eng. Chem. 2018, 66, 126.
- 31V. Hoseinpour, N. Ghaemi, J. Photochem. Photobiol., B 2018, 189, 234.
- 32L. Zhang, X. Bi, M. Gou, M. Sun, L. Tao, G. Chen, X. Liu, X. Meng, P. Zhao, Sep. Purif. Technol. 2021, 263. https://doi.org/10.1016/j.seppur.2021.118397
- 33G. Elmaci, C. E. Frey, P. Kurz, B. Zümreoǧlu-Karan, J. Mater. Chem. A 2016, 4, 8812.
- 34G. Elmacı, A. S. Ertürk, M. Sevim, Ö. Metin, Int. J. Hydrogen Energy 2019, 44, 17995.
- 35G. Elmacı, G. Özgenç, P. Kurz, B. Zumreoglu-Karan, Sustain. Energy Fuels 2020, 4, 3157.
- 36Y. Huang, Y. Wu, Y. Wang, X. Meng, X. Liu, ChemistrySelect 2020, 5, 3272.
- 37Y. Huang, J. Yan, N. Zhang, K. Zheng, Y. Hu, X. Liu, X. Meng, Catal. Lett. 2020, 150, 2021.
- 38T. K. Prasad, D. H. Hong, M. P. Suh, Chem. – Eur. J. 2010, 16, 14043.
- 39S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Mater. Lett. 2016, 180, 27.
- 40S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 203, 481.
- 41T. Balakrishnan, M. Anis, S. Arun, M. Kumar, S. Arun Kumar, S. Mayavan, RSC Adv. 2016, 6, 79448.
- 42L. Wang, M. Qin, W. Yang, Y. Gao, Y. Y. Li, ChemistrySelect 2017, 2, 5587.
- 43Y. He, D. Bin Jiang, J. Chen, D. Y. Jiang, Y. X. Zhang, J. Colloid Interface Sci. 2018, 510, 207.
- 44G. Elmaci, C. E. Frey, P. Kurz, B. Zümreoǧlu-Karan, Inorg. Chem. 2015, 54, 2734.
- 45S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Appl. Catal., B 2015, 164, 92.
- 46T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 1519.
- 47J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215.
- 48M. Biset-Peiró, S. Murcia-López, C. Fàbrega, J. R. Morante, T. Andreu, J. Phys. D: Appl. Phys. 2017, 50, 104003.
- 49K. Zeng, W. Li, Y. Zhou, Z. Sun, C. Lu, J. Yan, J. H. Choi, R. Yang, Chem. Eng. J. 2021, 421, 127831.
- 50S. Y. Lee, D. González-Flores, J. Ohms, T. Trost, H. Dau, I. Zaharieva, P. Kurz, ChemSusChem 2014, 7, 3442.
- 51J. Melder, W. L. Kwong, D. Shevela, J. Messinger, P. Kurz, ChemSusChem 2017, 10, 4491.
- 52M. B. Stevens, L. J. Enman, A. S. Batchellor, M. R. Cosby, A. E. Vise, C. D. M. Trang, S. W. Boettcher, Chem. Mater. 2017, 29, 120.
- 53Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452.
- 54B. E. Conway, Impedance Spectroscopy. Theory, Experiment, and Applications, Wiley, Hoboken 2005 469.
- 55K. Cui, B. Yan, Y. Xie, H. Qian, X. Wang, Q. Huang, Y. He, S. Jin, H. Zeng, J. Hazard. Mater. 2018, 350, 66.
- 56U. Kurtan, M. Amir, A. Yildiz, A. Baykal, Appl. Surf. Sci. 2016, 376, 16.
- 57J. Zhang, Q. Fang, J. Duan, H. Xu, H. Xu, S. Xuan, Langmuir 2018, 34, 4298.
- 58M. Nemanashi, R. Meijboom, J. Colloid Interface Sci. 2013, 389, 260.
- 59L. Qin, D. Huang, P. Xu, G. Zeng, C. Lai, Y. Fu, H. Yi, B. Li, C. Zhang, M. Cheng, C. Zhou, X. Wen, J. Colloid Interface Sci. 2019, 534, 357.
- 60Y. Xu, X. Shi, R. Hua, R. Zhang, Y. Yao, B. Zhao, T. Liu, J. Zheng, G. Lu, Appl. Catal., B 2020, 260, 118142.
- 61P. K. Sahoo, N. Kumar, S. Thiyagarajan, D. Thakur, H. S. Panda, ACS Sustain. Chem. Eng. 2018, 6, 7475.
- 62J. Luo, N. Zhang, J. Lai, R. Liu, X. Liu, J. Hazard. Mater. 2015, 300, 615.
- 63Z. Gan, A. Zhao, M. Zhang, W. Tao, H. Guo, Q. Gao, R. Mao, E. Liu, Dalton Trans. 2013, 42, 8597.
- 64B. Ajitha, Y. A. K. Reddy, Y. Lee, M. J. Kim, C. W. Ahn, Appl. Organomet. Chem. 2019, 33, e4867.
- 65S. Du, Z. Liao, Z. Qin, F. Zuo, X. Li, Catal. Commun. 2015, 72, 86.
- 66X. Zheng, G. Shen, C. Wang, Y. Li, D. Dunphy, T. Hasan, C. J. Brinker, B. L. Su, Nat. Commun. 2017, 8, 14921.
- 67Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, 355. https://doi.org/10.1126/science.aad4998
- 68N. R. Jana, T. Pal, Langmuir 1999, 15, 3458.
- 69H. Lu, H. Zhang, J. Wang, J. Zhou, Y. Zhou, RSC Adv. 2014, 4, 47297.
- 70P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, C. Wang, B. Liu, B. Zou, Nanoscale 2014, 6, 5343.
- 71A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, Am. Ethnol. 2013, 125, 13447.
- 72J. Melder, S. Mebs, P. A. Heizmann, R. Lang, H. Dau, P. Kurz, J. Mater. Chem. A 2019, 7, 25333.