Metal–organic frameworks based on a benzimidazole flexible tetracarboxylic acid: Selective luminescence sensing Fe3+, magnetic behaviors, DFT calculations, and Hirshfeld surface analyses
Xiaoyu Zhang
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorDingqi Xiong
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorPengkun Fu
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorMeng Yun
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorQinglin Yang
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorMei-Mei Jia
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorCorresponding Author
Xiuyan Dong
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Correspondence
Xiuyan Dong, School of Chemical and Biological Engineering, Lanzhou Jiaotong University. Lanzhou 730070, China
Email: [email protected]
Search for more papers by this authorXiaoyu Zhang
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorDingqi Xiong
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorPengkun Fu
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorMeng Yun
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorQinglin Yang
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorMei-Mei Jia
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorCorresponding Author
Xiuyan Dong
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
Correspondence
Xiuyan Dong, School of Chemical and Biological Engineering, Lanzhou Jiaotong University. Lanzhou 730070, China
Email: [email protected]
Search for more papers by this authorFunding information: Tianjin University-Lanzhou Jiaotong University Independent Innovation Fund Cooperation Project, Grant/Award Number: 2020060; Natural Science Foundation of Gansu Province, Grant/Award Number: 20JR5RA425; Research Projects of Colleges and Universities in Gansu Province, Grant/Award Number: 2019A-032
Abstract
Four novel metal–organic frameworks constructed from benzimidazole flexible tetracarboxylic acid ligand, 1-(3,5-dicarboxylbenzyl)-1H-benzimidazole-5,6-dicarboxylic acid (H4L), have been prepared by a solvothermal method in the presence of N-donor ancillary ligands (1,10-phen = 1,10-phenanthroline monohydrate, 4,4′-bibp = 1,4-di[pyridine-4-yl]benzene), namely, [Co2(L)(H2O)3]n (1), {[Cd2(L)(1,10-phen)(H2O)]·2H2O}n (2), {[Co4(L)2(4,4′-bibp)2(H2O)7]·4H2O}n (3), and {[Ni4(L)2(4,4′-bibp)2(H2O)7]·4H2O}n (4). Complexes 1 and 2 show a 3D supramolecular structure and crystallize in monoclinic space group P21/c. Complexes 3 and 4 are isomorphous and crystallize in monoclinic space group Pn, and the respective metals exhibit a similar coordination environment. The H4L ligand behaved in different coordinated modes in Complexes 1–4, namely, μ6-η1:η1:η1:η0:η1:η1:η1:η1:η1 in 1, μ6-η1:η1:η1:η1:η1:η1:η2:η1:η1 in 2, there are two coordination modes (μ5-η0:η1:η1:η0:η1:η1:η1:η0:η1 and μ5-η1:η1:η1:η0:η1:η1:η1:η0:η1) in 3 and 4. Furthermore, photoluminescence and magnetic properties have been studied. The results indicate that Complexes 3 and 4 show strong antiferromagnetic and ferromagnetic coupling through M–O–C–O–M interactions, respectively. In particular, Complex 2 can sensitively and selectively detect Fe3+ in aqueous systems, and the limit of detection (LOD) values of Fe3+ is ∼0.19 mM.
CONFLICT OF INTEREST
The authors declare no competing financial interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
aoc6431-sup-0001-Supporting information-Revised.docxWord 2007 document , 3.8 MB |
Figure S1. Binuclear metal unit [Cd2(COO)4(μ2-O)]n. Figure S2. 1D chain formed by Ni1, Ni2 and bridged carboxyl group in complex 4. Figure S3. The coordination modes of L in complexes 1–4. Figure S4. The dihedral angle between benzimidazole and central benzene ring of the H4L ligand in the different complexes. Figure S5. Infrared spectra of complexes 1–4. Figure S6. Luminescence spectra of 2 after treatment with different cations (0.2 M). Figure S7. Fluorescence decay curves of free ligand H4L and complex 2 in the solid-state. Figure S8. Stern-Volmer plots of I0/I-1 vs Fe3+ concentrations from 0 to 0.20 mM for 2. Figure S9. The UV–vis spectra of water suspensions with different concentration of Fe (NO3)3. Figure S10. The UV–vis absorption spectra of aqueous solutions containing various mental ions (M (NO3)x) with the same volume of 1 × 10−3 mol·L−1, the excitation spectrum and the absorption spectra of 2 (3 mg) dispersed in water (5 mL). Figure S11. Hirshfeld surfaces of complexes 1–4 mapped with d norm, shape-Index and curvedness. Figure S12. Two dimensional fingerprint plots overall plot, and those delineated into H … H, C … H/H … C, O … H/H … O contacts. Table S1. Selected Bond Lengths (Å) and Angles (°) for complexes 1–4. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1X. L. Zhang, Y.-Z. Zhang, Y.-Q. Jin, L. L. Geng, D.-S. Zhang, H. Hu, T. T. Li, B. Wang, J.-R. Li, Inorg. Chem. 2020, 59, 11728.
- 2L. Y. Cao, C. Wang, ACS Cent. Sci. 2020, 6, 2149.
- 3Y. Yang, X. Zhang, S. Kanchanakungwankul, Z. Y. Lu, H. Noh, Z. H. Syed, O. K. Farha, D. G. Truhlar, J. T. Hupp, J. Am. Chem. Soc. 2020, 142, 21169.
- 4T. T. Zhou, S. Y. Chen, X. X. Wang, C. S. Xie, D. W. Zeng, ACS Appl. Mater. Interfaces 2020, 12, 48948.
- 5Y. Pan, Q. J. Ding, H. J. Xu, C. Y. Shi, A. Singh, A. Kumar, J. Q. Liu, CrystEngComm 2019, 21, 4578.
- 6S. Khatua, P. Biswas, ACS Appl. Mater. Interfaces 2020, 12, 22335.
- 7Z.-H. Jiao, X.-L. Jiang, S.-L. Hou, M.-H. Tang, B. Zhao, Inorg. Chem. 2020, 59, 2171.
- 8W. Liu, C. Y. Chen, Z. L. Wu, Y. F. Pan, C. H. Ye, Z. R. Mu, X. L. Luo, W. M. Chen, W. S. Liu, ACS Sustainable Chem. Eng. 2020, 8, 13497.
- 9S.-J. Liu, S.-D. Han, Z. Chang, X.-H. Bu, New J. Chem. 2016, 40, 2680.
- 10C.-B. Tian, C. He, Y.-H. Han, Q. Wei, Q.-P. Li, P. Lin, S.-W. Du, Inorg. Chem. 2015, 54, 2560.
- 11X. Y. Zhang, Q. L. Yang, M. Yun, C. D. Si, N. An, M. M. Jia, J. C. Liu, X. Y. Dong, Acta Cryst. 2020, B76, 1001.
- 12X.-L. Qu, B. Yan, Inorg. Chem. 2019, 58, 524.
- 13C.-P. Li, W.-W. Long, Z. Lei, L. Guo, M.-J. Xie, J. Lü, X.-D. Zhu, Chem. Commun. 2020, 56, 12403.
- 14J. Q. Liu, W. J. Wang, Z. D. Luo, B. H. Li, D. Q. Yuan, Inorg. Chem. 2017, 56, 10215.
- 15J. X. Liao, W. J. Zeng, B. S. Zheng, X. Y. Cao, Z. X. Wang, G. Y. Wang, Q. Y. Yang, Inorg. Chem. Front. 2020, 7, 1939.
- 16J. T. Li, X. L. Luo, N. Zhao, L. R. Zhang, Q. S. Huo, Y. L. Liu, Inorg. Chem. 2017, 56, 4141.
- 17H. Li, K. C. Wang, Z. G. Hu, Y.-P. Chen, W. Verdegaal, D. Zhao, H.-C. Zhou, J. Mater. Chem. A 2019, 7, 7867.
- 18H.-W. Kuai, X.-C. Cheng, X.-H. Zhu, Z. Naturforsch. 2013, 68b, 789.
10.5560/znb.2013-3094 Google Scholar
- 19X.-C. Cheng, H.-W. Kuai, Z. Naturforsch. 2012, 67b, 1255.
10.5560/znb.2012-0235 Google Scholar
- 20H.-W. Kuai, T.-A. Okamura, W.-Y. Sun, J. Coord. Chem. 2012, 65, 3147.
- 21S. Mukherjee, B. Gole, Y. Song, P. S. Mukherjee, Inorg. Chem. 2011, 50, 3621.
- 22N. C. Yang, Z. Y. Liu, X. J. Shi, Q. Q. Liang, X. J. Zhao, Inorg. Chem. 2010, 49, 7969.
- 23M. H. Zeng, W. X. Zhang, X. Z. Sun, X. M. Chen, Angew. Chem. Int. Ed. 2010, 44, 3079.
- 24P. Mahata, S. Natarajan, P. Panissod, Chem. Soc. 2009, 131(29), 10140.
- 25D. S. Liu, G. S. Huang, C. C. Huang, X. H. Huang, J. Z. Chen, X. Z. You, Cryst. Growth des. 2009, 9, 5117.
- 26D.-S. Liu, Y. Sui, W.-T. Chen, J.-G. Huang, J.-Z. Chen, C.-C. Huang, J. Solid State Chem. 2012, 196, 161.
- 27F.-F. Li, M.-L. Zhu, L.-P. Lu, J. Solid State Chem. 2018, 261, 31.
- 28X. J. Li, Z. J. Yu, T. N. Guan, X. X. Li, G. C. Ma, X. F. Guo, Cryst. Growth des. 2015, 15, 278.
- 29H.-W. Kuai, X.-C. Cheng, X.-H. Zhu, J. Coord. Chem. 2013, 66, 28.
- 30Z. Huang, M. H. Zhao, C. Wang, S. X. Wang, L. Q. Dai, L. B. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 41294.
- 31L. Ding, X. B. Luo, P. H. Shao, J. K. Yang, D. Q. Sun, ACS Sustainable Chem. Eng. 2018, 6, 8494.
- 32P. Leo, D. Briones, J. A. García, J. Cepeda, G. Orcajo, G. Calleja, A. Rodríguez-Diéguez, F. Martínez, Inorg. Chem. 2020, 59, 18432.
- 33X. Xu, R.-N. Bian, S.-Z. Guo, W.-K. Dong, Y.-J. Ding, Inorg. Chim. Acta 2020, 513, 119945.
- 34Y.-Q. Pan, X. Xu, Y. Zhang, Y. Zhang, W.-K. Dong, Spectrochim. Acta A 2020, 229, 117927.
- 35X. F. Liu, E. C. Theil, Acc. Chem. Res. 2005, 38, 167.
- 36X.-Y. Xu, B. Yan, ACS Appl. Mater. Interfaces 2015, 7, 721.
- 37N. C. Andrews, N. Engl. J. Med. 1999, 341, 1986.
- 38Y. H. Tang, Y. Y. Li, H. Y. Yu, C. Gao, L. Liu, M. Y. Xing, L. G. Liu, P. Yao, Food Chem. Toxicol. 2014, 67, 131.
- 39C.-X. Yang, H.-B. Ren, X.-P. Yan, Anal. Chem. 2013, 85, 7441.
- 40M. Zheng, H. Q. Tan, Z. G. Xie, L. G. Zhang, X. B. Jing, Z. C. Sun, ACS. Appl. Mater. Interface 2013, 5, 1078.
- 41M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, N. J. Cioslowski, D. J. Fox, Gaussian 09, revision C. 02, Gaussian, Inc, Wallingford, CT 2009.
- 42A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 43C. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 44P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- 45W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
- 46J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Cryst. 2004, B60, 627.
- 47M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
- 48A. M. Asiri, C. C. Ersanlı, O. Sahin, M. N. Arshad, S. A. Hameed, J. Mol. Struct. 2016, 1111, 108.
- 49L.-Q. Chai, L.-J. Tang, L.-C. Chen, J.-J. Huang, Polyhedron 2017, 122, 228.
- 50Y.-H. Zhou, D.-L. Sun, J. Tao, L.-Q. Chen, Y.-F. Huang, Y.-K. Li, Y. Cheng, J. Coord. Chem. 2014, 67, 2393.
- 51L.-Q. Chai, Q. Hu, K.-Y. Zhang, L. Zhou, J.-J. Huang, J. Lumin. 2018, 203, 234.
- 52L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
- 53Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
- 54M. D. Allendorf, C. A. Bauer, R. K. Bhaktaa, R. J. T. Houka, Chem. Soc. Rev. 2009, 38, 1330.
- 55P. Cui, Z. Chen, D. L. Gao, B. Zhao, W. Shi, P. Cheng, Cryst. Growth des. 2010, 10, 4370.
- 56L. Duan, Z.-H. Wu, J.-P. Ma, X.-W. Wu, Y.-B. Dong, Inorg. Chem. 2010, 49, 11164.
- 57Q. R. Fang, G. S. Zhu, M. Xue, J. Y. Sun, F. X. Sun, S. L. Qiu, Inorg. Chem. 2006, 45, 3582.
- 58R. M. Wang, J. Zhang, L. J. Li, Inorg. Chem. 2009, 48, 7194.
- 59G.-H. Wei, J. Yang, J.-F. Ma, Y.-Y. Liu, S.-L. Li, L.-P. Zhang, Dalton Trans. 2008, 3080.
- 60D. Selmarten, M. Jones, G. Rumbles, P. R. Yu, J. Nedeljkovic, S. Shaheen, J. Phys. Chem. B 2005, 109, 15927.
- 61X.-X. Zhou, H.-C. Fang, Y.-Y. Ge, Z.-Y. Zhou, Z.-G. Gu, X. Gong, G. Zhao, Q.-G. Zhan, R.-H. Zeng, Y.-P. Cai, Cryst. Growth des. 2010, 10, 4014.
- 62X. X. Zhao, S. L. Wang, L. L. Zhang, S. Y. Liu, G. Z. Yuan, Inorg. Chem. 2019, 58, 2444.
- 63S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, S.-L. Li, W.-W. He, Y.-Q. Lan, P. Shen, Z.-M. Su, Chem. – Eur. J. 2014, 20, 3589.
- 64B.-L. Hou, D. Tian, J. Liu, L.-Z. Dong, S.-L. Li, D.-S. Li, Y.-Q. Lan, Inorg. Chem. 2016, 55, 10580.
- 65R.-M. Wen, S.-D. Han, G.-J. Ren, Z. Chang, Y.-W. Li, X.-H. Bu, Dalton Trans. 2015, 44, 10914.
- 66Y.-T. Liang, G.-P. Yang, B. Liu, Y.-T. Yan, Z.-P. Xia, Y.-Y. Wang, Dalton Trans. 2015, 44, 13325.
- 67W. H. Zhang, Y. Y. Wang, E. K. Lermontova, G. P. Yang, B. Liu, J. C. Jin, Z. Dong, Q. Z. Shi, Cryst. Growth des. 2010, 10, 76.
- 68F.-P. Huang, J.-L. Tian, W. Gu, X. Liu, S.-P. Yan, D.-Z. Liao, P. Cheng, Cryst. Growth des. 2016, 10, 1145.
- 69I. O. Osman, W.-T. Deng, Y. Fan, C. Hou, C.-D. Si, D.-C. Hu, Y.-J. Wu, J.-C. Liu, Transition Met. Chem. 2016, 41, 133.
- 70F. S. Delgado, M. Hernández-Molina, J. Sanchiz, C. Ruiz-Pérez, Y. Rodríguez-Martín, T. López, F. Lloretd, M. Julve, CrystEngComm 2004, 6, 106.
- 71L.-M. Duan, F.-T. Xie, X.-Y. Chen, Y. Chen, Y.-K. Lu, P. Cheng, J.-Q. Xu, Cryst. Growth des. 2006, 6, 1101.
- 72P. H. O. Santiago, M. B. Santiago, C. H. G. Martins, C. C. Gatto, Inorg. Chim. Acta 2020, 508, 119632.
- 73F. Wang, L.-Z. Liu, L. Gao, W.-K. Dong, Spectrochim. Acta Part A 2018, 203, 56.