Two novel Cu (II) levofloxacin complexes with different bioactive nitrogen-based ligands; single-crystal X-ray and various biological activities determinations
Asem Mubarak
Department of Chemistry, Birzeit University, Birzeit, Palestine
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Resources (lead), Visualization (lead)
Search for more papers by this authorCorresponding Author
Hijazi Abu Ali
Department of Chemistry, Birzeit University, Birzeit, Palestine
Correspondence
Hijazi Abu Ali, Department of Chemistry, Birzeit University, P.O. Box 14, West Bank, Birzeit, Palestine.
Email: [email protected]; [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Methodology (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead)
Search for more papers by this authorMunther Metani
Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (supporting), Visualization (equal)
Search for more papers by this authorAsem Mubarak
Department of Chemistry, Birzeit University, Birzeit, Palestine
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Resources (lead), Visualization (lead)
Search for more papers by this authorCorresponding Author
Hijazi Abu Ali
Department of Chemistry, Birzeit University, Birzeit, Palestine
Correspondence
Hijazi Abu Ali, Department of Chemistry, Birzeit University, P.O. Box 14, West Bank, Birzeit, Palestine.
Email: [email protected]; [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Methodology (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead)
Search for more papers by this authorMunther Metani
Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (supporting), Visualization (equal)
Search for more papers by this authorAsem Mubarak and Hijazi Abu Ali contributed equally to this work.
Funding information: Birzeit University
Abstract
Two new copper (II) complexes with the third generation quinolone antibacterial agent levofloxacin, 2-aminopyridine and 2,2′-bipyridine nitrogen-based ligands with the following molecular structures [Cu (levo)2(2-ampy)].6.25H2O (1) and [Cu (levo)(H2O)(2,2-bipy)](NO3).2.5H2O (2) were synthesized. The complexes were characterized by spectroscopic methods and others. The crystal structure of complex 1 revealed that the Cu (II) cation is coordinated to two bidentate chelating levofloxacinato ligands, and one monodentate 2-ampy ligand in the axial position forming a slightly distorted square pyramidal geometry. The mononuclear cationic complex 2 was determined in the triclinic crystal system and the chiral space group P1 with four molecules per unit cell in which the Cu (II) cation is coordinated to one bidentate chelating levofloxacinato ligand, one bidentate 2,2-bipy, and one water molecule in a distorted square pyramidal geometry. In vitro antibacterial activities for the complexes and their parent ligands against four gram-negative bacteria (Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia) and four gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) using the agar diffusion method have been determined with inhibition zone diameter (IZD) values between 29 and 46 mm. In addition, the minimum inhibition concentration (MIC) and the minimum bactericidal concentration (MBC) have been investigated. The MIC results of complexes 1 and 2 showed significant antibacterial activities against the P. mirabilis and B. subtilis than levofloxacin.
CONFLICT OF INTEREST
All authors read and approved the final manuscript and declare that they have no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
aoc6428-sup-0001-Supplementary Material.docxWord 2007 document , 1.1 MB |
Figure S1a: UV–Vis. spectra of complex 1 with parent ligands. Figure S1b: UV–Vis. spectra d-d transition of complex 1. Figure S2a: UV–Vis. spectra of complex 2 with parent ligands. Figure S2b: UV–Vis. spectra d-d transition of complex 2. Figure S3: IR spectra of complex 2 and levo ligand. Figure S4: IR spectra of complex 2 and levo ligand. Table S1: In-vitro, anti-bacterial activity data for complexes 1 and 2 against Gram negative bacteria. Table S2: In-vitro, anti-bacterial activity data for complexes 1 and 2 against Gram positive bacteria. |
aoc6428-sup-0002-Complex 1_100K_tables.docxWord 2007 document , 76.9 KB |
Data S1. Supporting Information |
aoc6428-sup-0003-Complex 1-checkcif.docxWord 2007 document , 343 KB |
Data S2. Supporting Information |
aoc6428-sup-0004-Complex 1-ckf.docxWord 2007 document , 130.1 KB |
Data S3. Supporting Information |
aoc6428-sup-0005-Complex 2_100K_tables.docxWord 2007 document , 109.9 KB |
Data S4. Supporting Information |
aoc6428-sup-0006-Complex 2-checkcif.docxWord 2007 document , 241.2 KB |
Data S5. Supporting Information |
aoc6428-sup-0007-Complex 2-ckf.docxWord 2007 document , 138.9 KB |
Data S6. Supporting Information |
aoc6428-sup-0008-Detailed process of the X-ray data collection.docxWord 2007 document , 28.6 KB |
Data S7. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1K. O. Soetan, C. O. Olaiya, O. E. Oyewole, Afr. J. Food Sci. 2010, 4, 200.
- 2M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda, Interdiscip. Toxicology 2014, 7(2), 60. https://doi.org/10.2478/intox-2014-0009
- 3O. Wada, JMAJ 2004, 47.
- 4B. Lippert, Cisplatin Chemistry and Biochemistry of a Leading Anticancer Drug, Wiley, Weinheim, Germany 1999.
10.1002/9783906390420 Google Scholar
- 5 B. Rosenberg, B. Lippert (Eds), Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, Verlag Chemie VCH, Basel 1999 3.
- 6L. Ronconi, P. J. Sadler, Coord. Chem. Rev. 2007, 251, 1633.
- 7Y. W. Jung, S. J. Lippard, Chem. Rev. 2007, 107, 1387.
- 8J. J. Wilson, S. J. Lippard, Chem. Rev. 2014, 114, 4470.
- 9A. M. K. Hansen, C. E. Bryan, K. West, B. A. Jensen, Arch. Environ. Contam. Toxicol. 2016, 70(1), 75. https://doi.org/10.1007/s00244-015-0204-1
- 10M. Kumar, G. Kumar, K. M. Dadureb, D. T. Masram, New J. Chem. 2019, 43(38), 1562.
- 11S. J. Stohs, D. Bagchi, Free Radical Biol. Med. 1995, 321. https://doi.org/10.1016/0891-5849(94)00159-H
- 12M. A. Lynes, Y. J. Kang, S. L. Sensi, G. A. Perdrizet, L. E. Hightower, Ann. N. Y. Acad. Sci. 2007, 1113, 159.
- 13R. R. Crichton, Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, Academic Press, Elsevier, Amsterdam 2018.
- 14I. Sousa, V. Claro, J. L. Pereira, A. L. Amaral, L. Cunha-Silva, B. de Castro, M. J. Feio, E. Pereira, P. Gameiro, J. Inorg. Biochem. 2012, 110, 64.
- 15E. Panel, A. Nda, EFSA j. 2015, 13(10), 1. https://doi.org/10.2903/j.efsa.2015.4253
- 16I. Iakovidis, I. Delimaris, S. M. Piperakis, Mol. Biol. Int. 2011, 2011, 1. https://doi.org/10.4061/2011/594529
10.4061/2011/594529 Google Scholar
- 17M. Melník, Coord. Chem. Rev. 1982, 42(2), 259. https://doi.org/10.1016/S0010-8545(00)80537-8
- 18J. Sharma, A. K. Singla, S. Dhawan, Int. J. Pharm. 2003, 260(2), 217. https://doi.org/10.1016/s0378-5173(03)00251-5
- 19H. Abu Ali, M. D. Darawsheh, E. Rappocciolo, Polyhedron 2013, 61, 235. https://doi.org/10.1016/j.poly.2013.06.015
- 20G. Bresciani, L. Biancalana, G. Pampaloni, F. Marchetti, Molecules 2020, 25, 3603. https://doi.org/10.3390/molecules25163603
- 21S. Batool, J. Mol. Struct. 2017, 1148, 7.
- 22L. Kucková, K. Jomová, A. Švorcová, M. Valko, P. Segl'a, J. Moncol', J. Kožíšek, Molecules 2015, 20(2), 2115. https://doi.org/10.3390/molecules20022115
- 23A. Dasgupta, Advances in Antibiotic Measurement, 1st ed., Elsevier Inc., 2012, 56. https://doi.org/10.1016/B978-0-12-394317-0.00013-3
10.1016/B978-0-12-394317-0.00013-3 Google Scholar
- 24V. P. Reddy, Organofluorine Compounds in Biology and Medicine; Elsevier, 2015; 133–178. https://doi.org/10.1016/b978-0-444-53748-5.00005-8
10.1016/B978-0-444-53748-5.00005-8 Google Scholar
- 25W. Y. Huang, J. Li, S. L. Kong, Z. C. Wang, H. L. Zhu, RSC Adv. 2014, 4, 35193.
- 26A. Tarushi, G. Psomas, C. P. Raptopoulou, D. P. Kessissoglou, J. Inorg. Biochem. 2009, 103, 898.
- 27D. Greenwood, Antimicrob. Agents Chemother. 1978, 13, 479.
- 28I. Turel, Coord. Chem. Rev. 2002, 232, 27.
- 29V. Uivarosi, Molecules 2013, 18(9), 11153.
- 30A. Tarushi, E. Polatoglou, J. Kljun, I. Turel, G. Psomas, D. P. Kessissoglou, Dalton Trans. 2011, 40, 9461.
- 31L. R. Gouvea, L. S. Garcia, D. R. Lachter, P. R. Nunes, F. De Castro Pereira, E. P. Silveira-Lacerda, Eur. J. Med. Chem. 2012, 55, 67.
- 32J. Kljun, I. Bratsos, E. Alessio, G. Psomas, U. Repnik, M. Butinar, B. Turk, I. Turel, Inorg. Chem. 2013, 52, 9039.
- 33J. Kljun, A. K. Bytzek, W. Kandioller, C. Bartel, M. A. Jakupec, C. G. Hartinger, et al., Organometallics 2011, 30, 2506.
- 34R. Hudej, J. Kljun, W. Kandioller, U. Repnik, B. Turk, C. G. Hartinger, et al., Organometallics 2012, 31, 5867.
- 35T. Trouchon, S. Lefebvre, Open J. Vet. Med. 2016, 6, 40.
- 36M. Zampakou, M. Akrivou, E. G. Andreadou, C. P. Raptopoulou, V. Psycharis, A. A. Pantazaki, et al., J. Inorg. Biochem. 2013, 121, 88.
- 37I. Turel, I. Leban, G. Klintschar, N. Bukovec, S. Zalar, J. Inorg. Biochem. 1997, 66, 77.
- 38K. C. Skyrianou, V. Psycharis, C. P. Raptopoulou, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 2011, 105(1), 63.
- 39A. Tarushi, C. P. Raptopoulou, V. Psycharis, A. Terzis, G. Psomas, D. P. Kessissoglou, Bioorg. Med. Chem. 2010, 18(7), 2678.
- 40A. Tarushi, G. Psomas, C. P. Raptopoulou, V. Psycharis, D. P. Kessissoglou, S. Polyhedron. 2009, 28(15), 3272.
- 41E. K. Efthimiadou, Y. Sanakis, M. Katsarou, C. P. Raptopoulou, A. Karaliota, N. Katsaros, et al., J. Inorg. Biochem. 2006, 100(8), 1378.
- 42Z. An, J. Gao, W. T. A. Harrison, J. Coord. Chem. 2010, 63(22), 3871.
- 43T. E. Kydonaki, E. Tsoukas, F. Mendes, A. G. Hatzidimitriou, A. Paulo, L. C. Papadopoulou, et al., J. Inorg. Biochem. 2016, 160, 94.
- 44K. P. Fu, S. C. Lafredo, B. Foleno, D. M. Isaacson, J. F. Barrett, A. J. Tobia, et al., Antimicrob. Agents Chemother. 1992, 36(4), 860.
- 45P. Drevenšek, J. Košmrlj, G. Giester, T. Skauge, E. Sletten, K. Sepčić, et al., J. Inorg. Biochem. 2006, 100, 1755.
- 46A. Galani, E. K. Efthimiadou, G. Mitrikas, Y. Sanakis, V. Psycharis, C. Raptopoulou, et al., Inorg. Chim. Acta 2014, 423, 207.
- 47S. Alwera, R. Bhushan, Biomed. Chromatogr. 2016, 30(8), 1223.
- 48D. C. Hooper, Kucers' The Use of Antibiotics A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Ed. 2017, 88, 2055-2084. https://doi.org/10.1201/9781315152110
- 49S. Somasundaram, K. Manivannan, Annu. Rev. Res. Biol. 2013, 3, 296.
- 50I. Sousa, V. Claro, J. L. Pereira, A. L. Amaral, L. Cunha-Silva, B. de Castro, et al., J. Inorg. Biochem. 2012, 110, 64.
- 51C.-C. Pagoni, V.-S. Xylouri, G. C. Kaiafas, M. Lazou, G. Bompola, E. Tsoukas, L. C. Papadopoulou, G. Psomas, D. Papagiannopoulou, J. Biol. Inorg. Chem. 2019, 24, 609.
- 52G. J. Noel, Clin. Med. Ther. 2009, 1, 433. https://doi.org/10.4137/cmt.s28
- 53S. J. Keam, K. F. Croom, G. M. Keating, Drugs 2005, 65(5), 695. https://doi.org/10.2165/00003495-200565050-00007
- 54R. Davis, H. M. Bryson, Drugs 1994, 47(4), 677. https://doi.org/10.2165/00003495-199447040-00008
- 55M. Ahmadifar, N. Vahidi-eyrisofla, R. Fathi, Iran. J. Med. Sci. 2014, 11(2), 71.
- 56D. C. Hooper, Clin. Infect. Dis. 2000, 31, S24. https://doi.org/10.1086/314056
- 57F. A. I. Al-Khodir, M. S. Refat, Russ. J. Gen. Chem. 2015, 85(3), 718. https://doi.org/10.1134/S1070363215030317
- 58N. Sultana, M. S. Arayne, S. B. S. Rizvi, U. Haroon, M. A. Mesaik, Med. Chem. Res. 2013, 22(3), 1371. https://doi.org/10.1007/s00044-012-0132-9
- 59S. A. Sadeek, S. F. Mohammed, N. G. Rashid, J. Chem, Pharm. Res. 2018, 10(3), 33.
- 60E. K. Efthimiadou, H. Thomadaki, Y. Sanakis, C. P. Raptopoulou, N. Katsaros, A. Scorilas, A. Karaliota, G. Psomas, J. Inorg. Biochem. 2007, 101, 64.
- 61M. E. Katsarou, E. K. Efthimiadou, G. Psomas, A. Karaliota, D. Vourloumis, J. Med. Chem. 2008, 51, 470.
- 62P. Drevensek, T. Zupancic, B. Pihlar, R. Jerala, U. Kolitsch, A. Plaper, I. Turel, J. Inorg. Biochem. 2005, 99, 432.
- 63M. Ruiz, L. Perello, R. Ortiz, A. Castineiras, C. Maichle-Mossmer, E. Canton, J. Inorg. Biochem. 1995, 59, 801.
- 64E. K. Efthimiadou, Y. Sanakis, C. P. Raptopoulou, A. Karaliota, N. Katsaros, G. Psomas, Bioorg. Med. Chem. Lett. 2006, 16, 3864.
- 65E. K. Efthimiadou, M. Katsarou, A. Karaliota, G. Psomas, J. Inorg. Biochem. 2008, 102, 910.
- 66D. Shingnapurkar, R. Butcher, Z. Afrasiabi, E. Sinn, F. Ahmed, F. Sarkar, S. Padhye, Inorg. Chem. Commun. 2007, 10, 459.
- 67I. Turel, I. Leban, N. Bukovec, J. Inorg. Biochem. 1994, 56, 273.
- 68J. Overgaard, I. Turel, D. E. Hibbs, Dalton Trans. 2007, 2171.
- 69D. K. Saha, U. Sandbhor, K. Shirisha, S. Padhye, D. Deobagkar, C. E. Anson, A. K. Powell, Bioorg. Med. Chem. Lett. 2004, 14, 3027.
- 70E. K. Efthimiadou, Y. Sanakis, M. Katsarou, C. P. Raptopoulou, A. Karaliota, N. Katsaros, G. Psomas, J. Inorg. Biochem. 2006, 100, 1378.
- 71A. Debnath, N. K. Mogha, D. T. Masram, Appl. Biochem. Biotechnol. 2015, 175, 2659.
- 72M. Kumar, G. Kumar, K. M. Dadure, D. T. Masram, New J. Chem. 2019, 43, 15462. https://doi.org/10.1039/c9nj03178b
- 73M. Kumar, G. Kumar, N. K. Mogha, R. Jain, F. Hussain, D. T. Masram, Spectrochim. Acta 2019, 212, 94.
- 74M. Kumar, N. K. Mogha, G. Kumar, F. Hussain, D. T. Masram, Inorg. Chim. Acta 2019, 490, 144.
- 75O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- 76G. M. Sheldrick, Acta Cryst 2015, A71, 3.
- 77G. M. Sheldrick, Acta Cryst 2015, C71, 3.
- 78J. Hudzicki, Am. Soc. Microbiol. 2016, 2009, 1.
- 79G. Raymoni, H. Abu Ali, Appl. Organomet. Chem. 2019, 33(1), 1. https://doi.org/10.1002/aoc.4680
- 80P. Parvekar, J. Palaskar, S. Metgud, R. Maria, S. Dutta, Biomater. Investig. Dent. 2020, 7(1), 105. https://doi.org/10.1080/26415275.2020.1796674
- 81I. O. Chikezie, Afr. J. Microbiol. Res. 2017, 11(23), 977. https://doi.org/10.5897/ajmr2017.8545
10.5897/AJMR2017.8545 Google Scholar
- 82A. Rusu, G. Hancu, G. Tóth, S. Vancea, F. Toma, A. D. Mare, A. Man, G. M. Niţulescu, V. Uivarosi, J. Mol. Struct. 2016, 1123, 384. https://doi.org/10.1016/j.molstruc.2016.07.035
- 83A. Galani, E. K. Efthimiadou, T. Theodosiou, G. Kordas, A. Karaliota, Inorg. Chim. Acta 2014, 423(Part B), 52. https://doi.org/10.1016/j.ica.2014.09.034
- 84A. Debnath, F. Hussain, D. T. Masram, Bioinorg. Chem. Appl. 2014, 2. https://doi.org/10.1155/2014/457478
- 85P. C. Huber, G. P. Reis, M. C. K. Amstalden, M. Lancellotti, W. P. Almeida, Polyhedron 2013, 57, 14. https://doi.org/10.1016/j.poly.2013.04.007
- 86A. Qasim, Int. J. Dev. Res. 2015, 05(06), 4702.
- 87F. Z. Mimouni, N. Belboukhari, C. Abdelkrim, Der Pharma Chem. 2018, 10(5), 31.
- 88Y. M. Jamil, M. A. Al-Maqtari, F. M. Al-Azab, M. K. Al-Qadasy, A. A. Al-Gaadbi, Eclet. Quim J. 2018, 43, 11.
- 89A. Galani, E. K. Efthimiadou, G. Mitrikas, Y. Sanakis, V. Psycharis, C. Raptopoulou, G. Kordas, A. Karaliota, Inorg. Chim. Acta 2014, 423, 207. https://doi.org/10.1016/j.ica.2014.08.005
- 90M. L. Niven, G. C. Percy, K. Nakamoto, Infared Spectra of Inorganic and Coordination Compounds, Vol. 3, Wiley-lnterscience 1978.
- 91N. Lah, P. Šegedin, I. Leban, Struct. Chem. 2002, 13(3–4), 357. https://doi.org/10.1023/A:1015824209616
- 92Á. García-Raso, J. J. Fiol, F. Bádenas, E. Lago, E. Molins, Polyhedron 2001, 20(22-23), 2877. https://doi.org/10.1016/S0277-5387(01)00900-7
- 93P. Ren, N. P. Su, J. G. Qin, M. W. Day, C. T. C. Chen, J. Struct. Chem. 2002, 21, 38.
- 94J. Qin, N. Su, C. Dai, C. Yang, D. Liu, M. W. Day, B. Wu, C. Chen, Polyhedron 1999, 18, 3461.
- 95I. Warad, Res. Chem. Intermed. 2013, 39(3), 1481.
- 96C. N. Pace, H. Fu, K. Lee Fryar, J. Landua, S. R. Trevino, D. Schell, R. L. Thurlkill, S. Imura, J. M. Scholtz, K. Gajiwala, J. Sevcik, L. Urbanikova, J. K. Myers, K. Takano, E. J. Hebert, B. A. Shirley, Protein Sci. 2014, 5(23), 652.
- 97P. Ruíz, R. Ortiz, L. Perelló, G. Alzuet, M. González-Álvarez, M. Liu-González, F. Sanz-Ruíz, J. Inorg. Biochem. 2007, 101(5), 831. https://doi.org/10.1016/j.jinorgbio.2007.01.009
- 98S. C. Wallis, L. R. Gahan, B. G. Charles, T. W. Hambley, P. A. Duckworth, J. Inorg. Biochem. 1996, 62(1), 1. https://doi.org/10.1016/0162-0134(95)00082-8
- 99A. Hussain, M. F. AlAjmi, M. T. Rehman, S. Amir, F. M. Husain, A. Alsalme, M. A. Siddiqui, A. A. AlKhedhairy, R. A. Khan, Sci. Rep. 2019, 9(1), 1. https://doi.org/10.1038/s41598-019-41063-x
- 100D. A. Martins, L. R. Gouvea, G. S. V. Muniz, S. R. W. Louro, D. da Gama Jaen Batista, M. D. N. C. Soeiro, L. R. Teixeira, Bioinorg. Chem. Appl. 2016, 2016, 1. https://doi.org/10.1155/2016/5027404
- 101M. J. Feio, I. Sousa, M. Ferreira, L. Cunha-Silva, R. G. Saraiva, C. Queirós, J. G. Alexandre, V. Claro, A. Mendes, R. Ortiz, et al., J. Inorg. Biochem. 2014, 138, 129. https://doi.org/10.1016/j.jinorgbio.2014.05.007
- 102H. Abu Ali, A. Abu Shamma, S. Kamel, J. Mol. Struct. 2017, 1142, 40. https://doi.org/10.1016/j.molstruc.2017.04.048
- 103H. Abu Ali, B. Jabali, Polyhedron 2016, 107, 97. https://doi.org/10.1016/j.poly.2016.01.010
- 104A. Z. El-Sonbati, M. A. Diab, A. M. Eldesoky, S. M. Morgan, O. L. Salem, Appl. Organomet. Chem. 2019, 33, e4839.
- 105M. A. Diab, S. G. Nozha, A. Z. El-Sonbati, M. A. El-Mogazy, S. M. Morgan, Appl. Organomet. Chem. 2019, 33, e5153.
- 106A. Z. El-Sonbati, M. A. Diab, S. M. Morgan, M. I. Abou-Dobara, A. A. El-Ghettany, J. Mol. Struct. 2020, 1, 200, 127065.
- 107M. A. Diab, G. G. Mohamed, W. H. Mahmoud, A. Z. El-Sonbati, S. M. Morgan, S. Y. Abbas, Appl. Organomet. Chem. 2019, 33, e4945.
- 108M. I. Abou-Dobara, N. F. Omar, M. A. Diab, A. Z. El-Sonbati, S. M. Morgan, O. L. Salem, A. M. Eldesoky, Mater. Sci. Eng. 2019, 103, 109727.
- 109S. M. Morgan, M. A. Diab, A. Z. El-Sonbati, Appl. Organomet. Chem. 2018, 32, e4504.
- 110S. M. Morgan, M. A. Diab, A. Z. El-Sonbati, Appl. Organomet. Chem. 2018, 32, e4305.
- 111A. Z. El-Sonbati, M. A. Diab, S. M. Morgan, H. A. Seyam, J. Mol. Struct. 2018, 1154, 354.
- 112H. M. Refaat, H. A. El-Badway, S. M. Morgan, J. Mol. Liq. 2016, 220, 802.
- 113A. Z. El-Sonbati, M. A. Diab, S. M. Morgan, A. M. Eldesoky, M. Z. Balboula, Appl. Organomet. Chem. 2018, 32, e4207.
- 114S. M. Morgan, M. A. Diab, A. Z. El-Sonbati, Appl. Organomet. Chem. 2018, 32, e4281.
- 115M. A. Diab, A. Z. El-Sonbati, S. M. Morgan, M. A. El-Mogazy, Appl. Organomet. Chem. 2018, 32, e4378.
- 116S. M. Morgan, A. Z. El-Sonbati, H. R. Eissa, J. Mol. Liq. 2017, 240, 752.
- 117A. Z. El-Sonbati, M. A. Diab, S. M. Morgan, J. Mol. Liq. 2017, 225, 195.
- 118G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.
- 119H. Abu Ali, M. Darweesh, E. Rappocciolo, Polyhedron 2013, 61, 235.
- 120H. Abu Ali, H. Fares, M. Darweesh, E. Rappocciolo, M. Akkawi, S. Jaber, Eur. J. Med. Chem. 2015, 89, 67.
- 121B. Jabali, H. Abu Ali, Polyhedron 2016, 117, 249.
- 122H. Abu Ali, H. Fares, M. Darweesh, A. Abuhijleh, E. Rappoccioio, M. Akkawi, S. Jaber, S. Maloul, Y. Hussein, Eur. J. Med. Chem. 2014, 82, 152.
- 123H. Abu Ali, B. Jabali, Polyhedron 2016, 16, 1.
- 124H. Abu Ali, S. Omar, M. Darawsheh, H. Fares, J. Coord. Chem. 2016, 69, 1110.
- 125 Technology Networks. Gram positive vs Gram negative https://www.technologynetworks.com/immunology/articles/gram-positive-vs-gram-negative-323007 (accessed Jul 23, 2020).
- 126S. Buracco, B. Peracino, C. Andreini, E. Bracco, S. Bozzaro, Front. Cell. Infect. Microbiol. 2018, 7, 1. https://doi.org/10.3389/fcimb.2017.00536
- 127S. Weber, H. Hilbi, Methods Mol. Biol. 2014, 1197(1), 153. https://doi.org/10.1007/978-1-4939-1261-2_9
- 128S. G. Nozha, S. M. Morgan, S. E. Abu Ahmed, M. A. El-Mogazy, M. A. Diab, A. Z. El-Sonbati, M. I. Abou-Dobara, J. Mol. Struct. 2021, 1, 227, 129525.
- 129A. Z. El-Sonbati, N. F. Omar, M. I. Abou-Dobara, M. A. Diab, M. A. El-Mogazy, S. M. Morgan, M. A. Hussien, A. A. El-Ghettany, J. Mol. Struct. 2021, 1, 239, 130481.
- 130A. Z. El-Sonbati, W. H. Mahmoud, G. G. Mohamed, M. A. Diab, S. M. Morgan, S. Y. Abbas, Appl. Organomet. Chem. 2019, 33, e5048.
- 131M. I. Abou-Dobara, N. F. Omar, M. A. Diab, A. Z. El-Sonbati, S. M. Morgan, M. A. El-Mogazy, J. Cell. Biochem. 2019, 120, 1667.
- 132G. G. Mohamed, A. A. El-Sherif, M. A. Saad, S. E. A. El-Sawy, S. M. Morgan, J. Mol. Liq. 2016, 223, 1311.