Synthesis, characterization, biological evaluation, and molecular docking approach of nickel (II) complexes containing O, N-donor chelation pattern of sulfonamide-based Schiff bases
Corresponding Author
Ahmed M. Ramadan
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Correspondence
Ahmed M. Ramadan, Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
Email: [email protected]
Search for more papers by this authorHoda A. Bayoumi
Chemistry Department, Girls College for Arts, Science and Education, Ain-Shams University, Cairo, Egypt
Search for more papers by this authorRehab M. I. Elsamra
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Search for more papers by this authorCorresponding Author
Ahmed M. Ramadan
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Correspondence
Ahmed M. Ramadan, Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
Email: [email protected]
Search for more papers by this authorHoda A. Bayoumi
Chemistry Department, Girls College for Arts, Science and Education, Ain-Shams University, Cairo, Egypt
Search for more papers by this authorRehab M. I. Elsamra
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Search for more papers by this authorAbstract
A series of Schiff bases (L1–L4) that possess in their structure bioactive sulfonamide group and their nickel (II) complexes have been synthesized. Microanalytical analyses, various spectroscopic methods such as Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (NMR), 13C NMR, UV–Vis, and MS, are used to explore the nature of bonding and to elucidate the chemical structures. The analytical and magnetic values suggest a range of stoichiometries 1:1, 1:2, and 2:1 (M:L) for the synthesized complexes of almost square planar geometry. The spectral comparative interpretation reveals that L1 and L2 coordinate to the central Ni (II) in tetradentate ONON donor sequence, whereas L3 and L4 in bidentate ON pattern through deprotonated phenolic-O and the azomethine-N. Density functional theory (DFT) and MOE-docking approaches are used to evaluate the molecular parameters and the binding propensity of the synthesized ligands and their complexes with 3s7s protein and to signify their inhibition strength. Besides, the anticancer, antimicrobial and antifungal activities have been screened against number of tumor cells and human pathogen strains. These in vitro studies reveal that Schiff base L4 and its complex, [Ni(L4-H)(OAc)(H2O)], have superior activities reflecting the importance of inserting bioactive pendant substituents such as thiazole ring and 3-fluorophenylazo to the pharmacophoric sulfonamide moiety. Moreover, some of the synthesized Ni (II) complexes display promising therapeutic effects as novel non-platinum antitumor agents after further preclinical investigations.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
aoc6412-sup-0001-Revised_Supplementary data.docxWord 2007 document , 9.1 MB |
FIGURE S1 FT-IR of 5-(3-fluorophenylazo)salicylaldehyde (3-FAS) Figure S2 FT-IR of (a) L2, (b) [Ni2(L2-H)(OAc)3(H2O)], (c) L4, (d) [Ni(L4-H)(OAc)(H2O)] Figure S3 1H NMR spectra of (a) L3, (b) [Ni(L3-H)2].4H2O Figure S4 1H NMR (DMSO-d6) spectrum of L4 Figure S5 1H NMR (DMSO-d6 + D2O) spectrum of L4 Figure S6 13C NMR (DMSO-d6) spectrum of L3 Figure S7 13C NMR (DMSO-d6) spectrum of L4 Figure S8 Mass spectrum of L3 Figure S9 Mass spectrum of L4 Figure S10 Mass spectrum of complex (1) Figure S11 Mass spectrum of complex (2) Figure S12 Mass spectrum of complex (3) Figure S13 Mass spectrum of complex (4) Figure S14 Optimized structures of (a) L1, (b) L2 using DFT-B3LYP/6-31G method Figure S15 Optimized structures of (a) L3 and (b) L4 using DFT-B3LYP/6-31G method Figure S16 Optimized structure of [Ni2(L1-H)(OAc)3(H2O)] complex (1) Figure S17 Optimized structure of [Ni(L3-H)2] complex (3) Figure S18 LUMO and HOMO of (a) L1 and (b) L2 Figure S19 LUMO and HOMO of (a) L3 and (b) L4 Figure S20 LUMO and HOMO [Ni2(L2-H)(OAC)3(H2O)] complex (2) Figure S21 Molecular electrostatic potential map of L1 Figure S22 Molecular electrostatic potential map of L3 Figure S23 Molecular electrostatic potential map of L4 Figure S24 Binding features (a) surface maps (b) of the best docked poses of the synthesized ligands (L1, L2 and L3) against breast cancer protein 3s7s Figure S25 Binding features (a) surface maps (b) of the best docked poses of the synthesized complexes (1) and (2) against breast cancer protein 3s7s Figure S26 Binding features (a) surface maps (b) of the best docked poses of the synthesized complex (3) against breast cancer protein 3s7s Figure S27 The inhibitory dose response curves of some selected ligands against HepG2 Figure S28 The inhibitory dose response curves of some selected complexes against HepG2 Figure S29 The inhibitory dose response curves of some selected ligands against HCT-116 Figure S30 The inhibitory dose response curves of some selected complexes against HCT-116 Figure S31 The inhibitory dose response curves of some selected complexes against normal oral epithelial cell line (OEC) Table S1. IR spectra (4,000–400 cm−1) of L1-L4 ligands and their Ni (II) complexes. Table S2. Selected bond lengths (Å) and bond angles of L2, L4, and their complexes |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1R. Paulpandiyan, N. Raman, J. Mol. Struct. 2016, 1125, 374.
- 2S. Omidi, A. Kakanejadifard, RSC Adv. 2020, 10, 30186.
- 3M. N. Uddin, S. S. Ahmed, S. M. R. Alam, J. Coord. Chem. 2020, 73, 3109.
- 4R. M. El-Ferjani, M. Ahmad, S. M. Dhiyaaldeen, F. W. Harun, M. Y. Ibrahim, H. Adam, B. M. Yamin, M. M. J. Al-Obaidi, R. Al Batran, Sci. Rep. 2016, 6, 38748.
- 5H. Kaur, S. M. Lim, K. Ramasamy, M. Vasudevan, S. A. A. Shah, B. Narasimhan, Arab. J. Chem. 2020, 13, 377.
- 6G. Devagi, F. Dallemer, P. Kalaivani, R. Prabhakaran, J. Organomet. Chem. 2018, 854, 1.
- 7S. H. Sumrra, A. U. Hassan, M. Imran, M. Khalid, E. U. Mughal, M. N. Zafar, M. N. Tahir, M. A. Raza, A. A. C. Braga, Appl. Organomet. Chem. 2020, 34, e5623.
- 8S. Mondal, T. K. Mondal, Y. Rajesh, M. Mandal, C. Sinha, Polyhedron 2018, 151, 344.
- 9R. Shah, H. Katouah, A. A. Sedayo, M. Abualnaja, M. M. Aljohani, F. Saad, R. Zaky, N. M. El-Metwaly, J. Mol. Liq. 2020, 319, 114116.
- 10E. R. Jamieson, S. J. Lippard, Chem. Rev. 1999, 99, 2,467.
- 11A. M. Ramadan, A. A. Alshehri, S. Bondock, J. Saudi, Chem. Soc. 2019, 23, 1192.
- 12S. Parveen, Appl. Organomet. Chem. 2020, 34, e5687.
- 13M. B. Alshammari, M. Ramadan, A. A. Aly, E. M. El-Sheref, M. A. Bakht, M. A. A. Ibrahim, A. M. Shawky, J. Mol. Struct. 2021, 1, 230, 129649.
- 14G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, John Wiley & Sons, Inc, NY 1989.
- 15R. Dennington, T. Keith, J. Millam, Gauss View, Version 4.1.2, Semichem Inc, Shawnee Mission, KS 2007.
- 16K. R. Valasani, J. R. Vangavaragu, V. W. Day, S. S. Yan, J. Chem. Inf. Model. 2014, 54, 902.
- 17R. Shah, T. M. Habeebullah, F. Saad, I. Althagafi, A. Y. Al-dawood, A. M. Al-Solimy, Z. A. Al-Ahmed, F. Al-Zahrani, T. A. Farghaly, N. El-Metwaly, Appl. Organomet. Chem. 2020, 34, e5886.
- 18S. M. Gomha, I. M. Abbas, M. A. A. Elneairy, M. M. Elaasser, B. K. A. Mabrouk, J. Serb. Chem. Soc. 2015, 80, 1,251.
- 19A. M. Ramadan, R. M. I. Elsamra, S. Bondock, Appl. Organomet. Chem. 2021, 35, e6102.
- 20M. S. Masoud, S. A. A. El-Enein, A. E. Ali, E. H. A. Elhamed, J. Mol. Struct. 2020, 1, 202, 127172.
- 21A. I. Vogel, A Text-Book of Practical Organic Chemistry, Third ed., Longmans, London 1961.
- 22Y. Cui, X. Dong, Y. Li, Z. Li, W. Chen, Eur. J. Med. Chem. 2012, 58, 323.
- 23R. R. Coombs, M. K. Ringer, J. M. Blacquiere, J. C. Smith, J. S. Neilsen, Y. -S. Uh, J. B. Gilbert, L. J. Leger, H. Zhang, A. M. Irving, S. L. Wheaton, C. M. Vogels, S. A. Westcott, A. Decken, F. J. Baerlocher, Transition Met. Chem. 2005, 30, 411.
- 24P. Nagpal, R. V. Singh, Appl. Organomet. Chem. 2004, 18, 221.
- 25G. Valarmathy, R. Subbalakshmi, R. Sumathi, R. Renganathan, J. Mol. Struct. 2020, 1, 199, 127029.
- 26E. H. Alosaimi, A. A. Alsibaai, M. S. El-Shahawi, M. S. Refat, Russ. J. Phys. Chem. A 2018, 92, 2227.
- 27A. M. A. Alaghaz, R. A. A. Ammar, G. Koehler, K. P. Wolschann, T. M. El-Gogary, Spectrochim. Acta Part a 2014, 128, 724.
- 28C. M. Sharaby, M. F. Amine, A. A. Hamed, J. Mol. Struct. 2017, 1134, 208.
- 29S. Hamura, T. Oda, Y. Shimizu, K. Matsubara, H. Nagashima, J. Chem. Soc., Dalton Trans. 2002, 1521.
- 30G. Prajapat, R. Gupta, N. Bhojak, Orient. J. Chem. 2019, 35, 308.
- 31A. Z. El-Sonbati, M. A. Diab, S. M. Morgan, A. M. Eldesoky, M. Z. Balboula, Appl. Organomet. Chem. 2018, 32, e4207.
- 32M. Ul-Hassan, A. Scozzafava, Z. H. Chohan, C. T. Supuran, J. Enzyme Inhib. 2001, 16, 499.
- 33A. M. A. Alaghaz, H. A. Bayoumi, Y. A. Ammar, S. A. Aldhlmani, J. Mol. Struct. 2013, 1035, 383.
- 34H. M. Abumelha, J. H. Al-Fahemi, I. Althagafi, A. A. Bayazeed, Z. A. Al-Ahmed, A. M. Khedr, N. El-Metwaly, J. Inorg. Organomet. Polym. Mater. 2020, 30, 3277.
- 35J. McKnight, M. R. Cheesman, A. J. Thomson, J. S. Miles, A. W. Munro, Eur. J. Biochem. 1993, 213, 683.
- 36A. M. Mansour, O. R. Shehab, Arabian J. Chem. 2021, 14, 102,932.
- 37N. Al-Awadi, N. M. Shuaib, A. El-Dissouky, Spectrochim. Acta Part a 2006, 65, 36.
- 38A. Ashraf, W. A. Siddiqui, J. Akbar, G. Mustafa, H. Krautscheid, N. Ullah, B. Mirza, F. Sher, M. Hanif, C. G. Hartinger, Inorg. Chim. Acta 2016, 443, 179.
- 39H. Moustafa, G. G. Mohamed, S. Elramly, J. Chin. Chem. Soc. 2020, 67, 1783.
- 40X.-Q. Song, Y.-Q. Peng, G.-Q. Cheng, X. -R. Wang, P. -P. Liu, W. -Y. Xu, Inorg. Chim. Acta 2015, 427, 13.
- 41R. K. Ray, G. R. Kauffman, Inorg. Chim. Acta 1990, 173, 207.
- 42M. D. L. A. Zermeño-Macías, M. M. González-Chávez, F. Méndez, R. González-Chávez, A. Richaud, Molecules 2017, 22, 427.
- 43D. Ghosh, J. Lo, D. Morton, D. Valette, J. Xi, J. Griswold, S. Hubbell, C. Egbuta, W. Jiang, J. An, H. M. L. Davies, J. Med. Chem. 2012, 55, 8,464.
- 44R. C. Wade, P. J. Goodford, Prog. Clin. Biol. Res. 1989, 289, 433.
- 45J. de Azevedo, F. Walter, R. Dias, Curr. Drug Targets 2008, 9, 1031.
- 46W. Al Zoubi, A. A. S. Al-Hamdani, S. D. Ahmed, Y. G. Ko, Appl. Organomet. Chem. 2018, 32, e3895.
- 47S. Narwal, S. Kumar, P. K. Verma, Chem. Cent. J. 2017, 11, 52.
- 48N. Raman, R. Jeyamurugan, S. Sudharsan, K. Karuppasamy, L. Mitu, Arabian J. Chem. 2013, 6, 235.
- 49M. González-Álvarez, A. Pascual-Álvarez, L. del Castillo Agudo, A. Castiñeiras, M. Liu-González, J. Borrása, G. Alzuet-Piña, Dalton Trans. 2013, 42, 10244.