Employment of l-Citrulline as an Effective Molecular Bridge for Regulating the Buried Interface of Perovskite Solar Cells to Achieve High Efficiency and Good Stability
ChaoBo Hao
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Both authors contributed equally to this work.
Search for more papers by this authorRuoyao Xu
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
Both authors contributed equally to this work.
Search for more papers by this authorBoyang Li
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorYi Chen
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorQingYu Jia
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorZhiQiang Wang
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055 China
Search for more papers by this authorJiangXue Pei
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorBoHua Zhang
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Yaqiong Su
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Jingrui Li
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Hua Dong
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. ZhaoXin Wu
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Alex K.-Y. Jen
Department of Materials Science, City University of Hong Kong, Kowloon, 999077 Hong Kong
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. DongDong Wang
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorChaoBo Hao
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Both authors contributed equally to this work.
Search for more papers by this authorRuoyao Xu
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
Both authors contributed equally to this work.
Search for more papers by this authorBoyang Li
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorYi Chen
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorQingYu Jia
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorZhiQiang Wang
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055 China
Search for more papers by this authorJiangXue Pei
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorBoHua Zhang
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Yaqiong Su
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Jingrui Li
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Hua Dong
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. ZhaoXin Wu
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Alex K.-Y. Jen
Department of Materials Science, City University of Hong Kong, Kowloon, 999077 Hong Kong
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. DongDong Wang
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
l-Citrulline (CIT), with amino acid end groups (─COOH, ─NH2) and a urea end group (─NH─CO─NH2), functions as a molecular bridge to modulate the SnO2/perovskite buried interface. The optimized PSC device (0.07065 cm2) achieved an impressive champion PCE of 25.95%. The solar module with an active area of 23.26 cm2 achieved a PCE of 22.70%, which is one of the highest values reported recently using the slot-die coating method. The strategy offers valuable insights to advance the industrialization of large-area devices.
Abstract
Suppressing the defects from SnO2 and perovskite interface is essential for the fabrication of large-area n–i–p perovskite solar cells (PSCs) with the needed lifetime and efficiency for commercialization. Here, we report the employment of l-citrulline (CIT), which has amino acid (─COOH, ─NH2) and urea (─NH─CO─NH2) groups, during SnO2 colloidal dispersion to function as a molecular bridge to modulate the SnO2/perovskite buried interface. The amino acid group can effectively coordinate with Sn4+ to passivate the oxygen vacancy defects of SnO2, and the urea group can interact with uncoordinated Pb2+ and I−. These interactions not only improve the electron mobility of SnO2 but also facilitate the formation of larger grain-size perovskite film. In addition, they can also inhibit the generation of excess PbI2 and the nonphotoactive δ phase to result in suppressed trap-assisted nonradiative recombination. Consequently, the incorporation of CIT helps achieve a champion power conversion efficiency (PCE) of 25.95% (0.07065 cm2) in PSC with improved shelf life/light soaking stability. When combined with an antisolvent-free slot-die coating technique in air, the solar modules (23.26 cm2) could achieve a PCE of 22.70%, which is among the highest PCE reported so far.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202508169-sup-0001-SuppMat.docx14.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 2M. Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith, Science 2012, 338, 643–647.
- 3J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316–319.
- 4Y. Huang, K. Yan, X. Wang, B. Li, B. Niu, M. Yan, Z. Shen, K. Zhou, Y. Fang, X. Yu, H. Chen, L. Zhang, C. Li, Adv. Mater. 2024, 36, 2408101.
- 5F. Jafarzadeh, L. Dong, D. Jang, M. Wagner, G. Koch, S. Qiu, S. Feroze, J. Cerrillo, C. Brabec, A. Di Carlo, F. Brunetti, H. Egelhaaf, F. Matteocci, Sol. RRL 8, 2400530.
- 6H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542–546.
- 7Y. Pu, H. Su, C. Liu, M. Guo, L. Liu, H. Fu, Energies 2023, 16, 5015.
- 8D. Li, Z. Xing, Y. Wang, J. Li, B. Hu, X. Hu, T. Hu, Y. Chen, Angew. Chem. Int. Ed. 2024, 63, e202400708.
- 9M. Yang, Z. Qin, M. Chen, X. Lin, X. Luan, Z. Yang, L. Han, Y. Wang, Adv. Funct. Mater. 2024, 34, 2402053.
- 10X. Ji, L. Bi, Q. Fu, B. Li, J. Wang, S. Y. Jeong, K. Feng, S. Ma, Q. Liao, F. R. Lin, H. Y. Woo, L. Lu, A. K. Y. Jen, X. Guo, Adv. Mater. 2023, 35, 2303665.
- 11W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730–6733.
- 12Q. Jiang, X. Zhang, J. You, Small 2018, 14, 1801154.
- 13L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Adv. Funct. Mater. 2018, 28, 1802757.
- 14Z. Qu, Y. Zhao, F. Ma, L. Mei, X.-K. Chen, H. Zhou, X. Chu, Y. Yang, Q. Jiang, X. Zhang, J. You, Nat. Commun. 2024, 15, 8620.
- 15C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 16D. Xue, Y. Hou, S. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. Proppe, Y. Dong, M. Saidaminov, S. Kelley, J. Hu, E. Sargent, Nat. Commun. 2020, 11, 1514.
- 17J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. Shield, J. Huang, Sci. Adv. 2017, 3, eaao5616.
- 18L. Yuan, S. Zou, K. Zhang, P. Huang, Y. Dong, J. Wang, K. Fan, M. Y. Lam, X. Wu, W. Cheng, R. Tang, W. Chen, W. Liu, K. S. Wong, K. Yan, Adv. Mater. 2024, 36, e2409261.
- 19Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng, J. Wang, H. Raza, R. Chen, H. Wang, S. Liu, P. Yu, X. Meng, J. He, J. Zhou, X. Hu, Z. Zhang, L. Qiu, W. Chen, Z. Liu, Energy Environ. Sci. 2023, 16, 2295–2303.
- 20J. Xu, J. Wu, Q. Zheng, L. Gao, S. Tang, F. Yu, W. Sun, Z. Lan, Mater. Today Phys. 2024, 48, 101564.
- 21R. Li, S. Zhang, H. Zhang, Z. Wang, X. Feng, Y. Du, T. Zhou, X. Chen, P. Liu, L. Liu, J. Zhang, Q. Chen, L. Xi, K. Zhao, S. Liu, Q. Tian, Angew. Chem. Int. Ed. 2024, 63, e202410600.
- 22M. Zhao, W.-M. Gu, K.-J. Jiang, X. Jiao, K. Gong, F. Li, X. Zhou, Y. Song, Angew. Chem. Int. Ed. 2024, 64, e202418176.
- 23H. Zhu, C. Wang, Y. Mo, D. Chen, B. Xue, F. Huang, ACS App. Mater. Interfaces 2024, 16, 58739–58746.
- 24Q. Zhou, B. B. Liu, Y. Chen, D. Q. Ma, X. Han, D. M. He, Z. F. Zhang, H. Yang, L. M. Ding, J. Feng, J. H. Yi, C. Chen, J. Z. Chen, Adv. Funct. Mater. 2024, 34, 2315064.
- 25H. Liang, J. Chen, W. Zhu, F. Ma, N. Li, H. Gu, J. Xia, Y. Lin, W. Yang, S. Zhang, Y. Zhang, B. Han, S. Yang, S. Ding, C. Liang, Angew. Chem. Int. Ed. 2024, 64, e202413105.
- 26S. Raghavan, M. Dikshit, Eur. J. Pharmacol. 2001, 431, 61–69.
- 27A. Vadivel, J. Aschner, G. Rey-Parra, J. Magarik, H. Zeng, M. Summar, F. Eaton, B. Thébaud, Pediatr. Res. 2010, 68, 519–525.
- 28Y. Kurauchi, K. Mokudai, M. Morita, A. Kamimura, A. Mori, K. Sakamoto, T. Nakahara, K. Ishii, J. Funct. Foods 2017, 38, 540–544.
- 29D. Ramírez-Contreras, A. García-García, A. Mendoza, L. de la Rosa, B. Sánchez-Gaytán, F. Melendez, M. Castro, E. González-Vergara, Crystals 2023, 13, 1391.
- 30J. Kruszynska, F. Sadegh, M. J. Patel, E. Akman, P. Yadav, M. M. Tavakoli, S. K. Gupta, P. N. Gajjar, S. Akin, D. Prochowicz, ACS Appl. Energy Mater. 2022, 5, 13617–13626.
- 31J. Zhang, Z. Li, F. Guo, H. Jiang, W. Yan, C. Peng, R. Liu, L. Wang, H. Gao, S. Pang, Z. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202305221.
- 32Y. Meng, Y. Wang, C. Liu, P. Yan, K. Sun, Y. Wang, R. Tian, R. Cao, J. Zhu, H. Do, J. Lu, Z. Ge, Adv. Mater. 2024, 36, 2309208.
- 33H. Bi, B. Liu, D. He, L. Bai, W. Wang, Z. Zang, J. Chen, Chem. Eng. J. 2021, 418, 129375.
- 34H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Angew. Chem. Int. Ed. 2023, 62, e202304568.
- 35D. Ramírez-Contreras, A. García-García, B. Sánchez-Gaytán, L. Serrano-de la Rosa, F. Melendez, D. Choquesillo-Lazarte, A. Rodríguez-Diéguez, M. Castro, E. González-Vergara, Crystals 2022, 12, 1386.
- 36B. Mascaliovas, F. Bergamini, A. Cuin, P. Corbi, Powder Diffr. 2015, 30, 357–361.
- 37B. Liu, Q. Zhou, Y. Li, Y. Chen, D. He, D. Ma, X. Han, R. Li, K. Yang, Y. Yang, S. Lu, X. Ren, Z. Zhang, L. Ding, J. Feng, J. Yi, J. Chen, Angew. Chem. Int. Ed. 2024, 63, e202317185.
- 38Y. Sun, R. Xu, L. Yang, J. Dai, X. Zhu, X. Cao, P. Li, H. Tang, T. Liu, D. Mo, Y. Wang, J. Li, F. Yuan, B. Jiao, Z. Wu, H. Dong, Adv. Funct. Mater. 34, 2024, 2410165.
- 39H. Su, Z. Xu, X. He, Y. Yao, X. Zheng, Y. She, Y. Zhu, J. Zhang, S. Liu, Adv. Mater. 2024, 36, 2306724.
- 40C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
- 41X. Jiang, K. Dong, P. Li, L. Zheng, B. Zhang, Y. Yin, G. Yang, L. Wang, M. Wang, S. Li, L. Zhu, S. Niu, S. Yu, S. Liu, W. Tian, X. Guo, M. Wei, S. M. Zakeeruddin, L. Sun, S. Pang, M. Grätzel, Angew. Chem. Int. Ed. 2024, 64, e202414128.
- 42Y. Zou, W. Yu, H. Guo, Q. Li, X. Li, L. Li, Y. Liu, H. Wang, Z. Tang, S. Yang, Y. Chen, B. Qu, Y. Gao, Z. Chen, S. Wang, D. Zhang, Y. Chen, Q. Chen, S. M. Zakeeruddin, Y. Peng, H. Zhou, Q. Gong, M. Wei, M. Grätzel, L. Xiao, Science 2024, 385, 161–167.
- 43Z. Liu, Y. Li, Z. Chen, C. Tan, X. Du, F. Tian, J. Shi, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Funct. Mater. 2024, 34, 2404173.
- 44Y. Zhang, B. Yu, Y. Sun, J. Zhang, Z. Su, H. Yu, Angew. Chem. Int. Ed. 2024, 63, e202404385.
- 45J. Chen, H. Dong, J. Li, X. Zhu, J. Xu, F. Pan, R. Xu, J. Xi, B. Jiao, X. Hou, K. W. Ng, S.-P. Wang, Z. Wu, ACS Energy Lett. 2022, 7, 3685–3694.
- 46Y. Liao, F. Fei, B. Li, Y. Li, Y. Xu, S. Wang, X. Fang, L. Li, N. Yuan, J. Ding, Sol. RRL 2023, 7, 2300364.
- 47Y. Wang, H. Yang, K. Zhang, M. Tao, M. Li, Y. Song, ACS Energy Lett. 2022, 7, 3646–3652.
- 48X. Zhu, H. Dong, J. Chen, J. Xu, Z. Li, F. Yuan, J. Dai, B. Jiao, X. Hou, J. Xi, Z. Wu, Adv. Funct. Mater. 2022, 32, 2202408.
- 49P. Chen, Q. Zheng, Z. Jin, Y. Wang, S. Wang, W. Sun, W. Pan, J. Wu, Adv. Funct. Mater. 2024, 34, 2409497.
- 50M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, et al., Nat. Energy 2020, 5, 35–49.
- 51H. Zhou, K. Cai, S. Yu, Z. Wang, Z. Xiong, Z. Chu, X. Chu, Q. Jiang, J. You, Nat. Commun. 2024, 15, 6679.
- 52Y. Zang, Y. Tu, C. Jiao, W. Li, P. Zhou, J. Cheng, G. Yang, T. Shao, J. Ye, G. Li, L. Chu, S. Lu, G. Liang, Y. Liang, J. Wang, Z. Zhong, R. Hu, W. Yan, Chem. Eng. J. 2024, 480, 148133.
- 53L. Wang, T. Zhang, S. Yuan, F. Qian, X. Li, H. Zheng, J. Huang, S. Li, ACS Appl. Mater. Interfaces 2024, 16, 4751–4762.