From Binary to Higher-Order Organic Cocrystals: Design Principles and Performance Optimization
Jia-Hao Jiang
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou Jiangsu, 215009 P.R. China
Search for more papers by this authorCorresponding Author
Shuai Zhao
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu, 215123 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanqiu Sun
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou Jiangsu, 215009 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xue-Dong Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu, 215123 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJia-Hao Jiang
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou Jiangsu, 215009 P.R. China
Search for more papers by this authorCorresponding Author
Shuai Zhao
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu, 215123 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanqiu Sun
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou Jiangsu, 215009 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xue-Dong Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu, 215123 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
From binary to higher-order organic cocrystals: strategic design principles, precision synthesis, and multifunctional applications. The emergence of ternary and higher-order cocrystalline systems, comprising three or more components, has revolutionized the paradigm of material design by significantly expanding both structural diversity and functional potential. These advanced architectures not only exhibit enhanced design versatility through synergistic molecular engineering but also enable unprecedented modulation of physicochemical properties, thereby introducing novel optoelectronic, mechanical, and stimuli-responsive functionalities.
Abstract
Organic cocrystals, particularly the evolution from binary to higher-order structures, have garnered considerable attention due to their tunable intermolecular interactions and unique material properties. Binary cocrystals, formed through π-π stacking, charge transfer, and hydrogen/halogen bonding, allow for precise control over molecular packing and enhanced optoelectronic properties. In contrast, higher-order cocrystals, incorporating three or more components, enable greater complexity and functional diversity. Strategies such as homologation via isostructural substitution, hierarchical intermolecular interactions, and long-range Synthon Aufbau Modules facilitate the synthesis of these advanced materials. The shift toward higher-order cocrystals paves the way for novel applications in fields such as deep learning for cocrystal prediction, drug design, organic solar cells, and NIR-II photothermal conversion. However, challenges related to molecular screening, ratio optimization, scalable synthesis, and long-term stability remain critical hurdles for the broader implementation of these materials in practical applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1B. Li, L. Liu, Y. Wang, K. Liu, Z. Zheng, S. Sun, Y. Hu, L. Li, C. Li, Nat. Commun. 2024, 15, 2535.
- 2Y. Wang, H. Wu, L. O. Jones, M. A. Mosquera, C. L. Stern, G. C. Schatz, J. F. Stoddart, J. Am. Chem. Soc. 2023, 145, 1855–1865.
- 3Y. Wang, H. Wu, P. Li, S. Chen, L. O. Jones, M. A. Mosquera, L. Zhang, K. Cai, H. Chen, X. Y. Chen, C. L. Stern, M. R. Wasielewski, M. A. Ratner, G. C. Schatz, J. F. Stoddart, Nat. Commun. 2020, 11, 4633.
- 4C. Zhai, X. Yin, S. Niu, M. Yao, S. Hu, J. Dong, Y. Shang, Z. Wang, Q. Li, B. Sundqvist, B. Liu, Nat. Commun. 2021, 12, 4084.
- 5T. Hashimoto, R. Oketani, M. Nobuoka, S. Seki, I. Hisaki, Angew. Chem. Int. Ed. 2023, 62, e202215836.
- 6Y. Wang, H. Wu, W. Hu, J. F. Stoddart, Adv. Mater. 2022, 34, e2105405.
- 7Y. Ma, C.-F. Xu, X.-R. Mao, Y. Wu, J. Yang, L.-P. Xu, M.-P. Zhuo, H. Lin, S. Zhuo, X.-D. Wang, J. Am. Chem. Soc. 2023, 145, 9285–9291.
- 8Y. Yu, X.-Y. Xia, C.-F. Xu, Z.-J. Lv, X.-D. Wang, L.-S. Liao, J. Am. Chem. Soc. 2024, 146, 11845–11854.
- 9Q. Lv, X.-D. Wang, Y. Yu, C.-F. Xu, Y.-J. Yu, X.-Y. Xia, M. Zheng, L.-S. Liao, Nat. Chem. 2024, 16, 201–209.
- 10M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, Y. Wu, S. Chen, L.-S. Liao, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 11300–11304.
- 11Y.-X. Ma, X.-D. Wang, Nat. Commun. 2024, 15, 7706.
- 12A. D. Bond, CrystEngComm 2007, 9, 833.
- 13G. R. Desiraju, CrystEngComm 2003, 5, 466.
- 14J. D. Dunitz, CrystEngComm 2003, 5, 506.
- 15G. Bolla, A. Nangia, Chem. Commun. 2015, 51, 15578–15581.
- 16R. Dubey, N. A. Mir, G. R. Desiraju, IUCrJ 2016, 3, 102–107.
- 17N. A. Mir, R. Dubey, G. R. Desiraju, IUCrJ 2016, 3, 96–101.
- 18C.-L. Chou, C.-T. Lin, C.-T. Kao, C.-C. Lin, ACS Omega 2024, 9, 38371–38384.
- 19Y. Wei, Y. Cai, X. Gu, G. Yao, Z. Fu, Y. Zhu, J. Yang, J. Dai, J. Zhang, X. Zhang, X. Hao, G. Lu, Z. Tang, Q. Peng, C. Zhang, H. Huang, Adv. Mater. 2024, 36, 2304225.
- 20M. Paul, S. Chakraborty, G. R. J. J. o. t. A. C. S. Desiraju, J. Am. Chem. Soc. 2018, 140, 2309–2315.
- 21M. Paul, G. R. Desiraju, Angew. Chem. Int. Ed. 2019, 58, 12027–12031.
- 22C. B. Aakeröy, D. J. Salmon, CrystEngComm 2005, 7, 439.
- 23J. A. Bis, O. L. McLaughlin, P. Vishweshwar, M. J. Zaworotko, Cryst. Growth Des. 2006, 6, 2648–2650.
- 24D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 2013, 42, 7638.
- 25S. Saha, G. R. Desiraju, J. Am. Chem. Soc. 2018, 140, 6361–6373.
- 26F. Topić, K. Rissanen, J. Am. Chem. Soc. 2016, 138, 6610–6616.
- 27D. A. Adsmond, A. S. Sinha, U. B. R. Khandavilli, A. R. Maguire, S. E. Lawrence, Cryst. Growth Des. 2016, 16, 59–69.
- 28N. K. Duggirala, G. P. F. Wood, A. Fischer, Ł. Wojtas, M. L. Perry, M. J. Zaworotko, Cryst. Growth Des. 2015, 15, 4341–4354.
- 29J.-H. Jiang, S. Zhao, J.-X. Zhang, Z.-J. Lv, J. Song, Y. Sun, L.-S. Liao, X.-D. Wang, Nano Lett. 2024, 24, 12921–12927.
- 30C. B. Aakeröy, A. M. Beatty, B. A. Helfrich, Angew. Chem. Int. Ed. 2001, 40, 3240–3242.
10.1002/1521-3773(20010903)40:17<3240::AID-ANIE3240>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 31S. Tothadi, G. R. Desiraju, Chem. Commun. 2013, 49, 7791.
- 32S. Aitipamula, A. B. H. Wong, P. S. Chow, R. B. H. Tan, CrystEngComm 2013, 15, 5877.
- 33G. Bolla, A. Nangia, IUCrJ 2016, 3, 152–160.
- 34C. A. Gunawardana, C. B. Aakeröy, Chem. Commun. 2018, 54, 14047–14060.
- 35Z. X. Ng, D. Tan, W. L. Teo, F. León, X. Shi, Y. Sim, Y. Li, R. Ganguly, Y. Zhao, S. Mohamed, F. García, Angew. Chem. Int. Ed. 2021, 60, 17481–17490.
- 36S. P. Yelgaonkar, G. Campillo-Alvarado, L. R. MacGillivray, J. Am. Chem. Soc. 2020, 142, 20772–20777.
- 37F. Nie, D. Yan, Angew. Chem. Int. Ed. 2023, 62, e202302751.
- 38J. D. Dunitz, A. Gavezzotti, Chem. Soc. Rev. 2009, 38, 2622.
- 39Y. Sun, Y. Lei, W. Hu, W. Y. Wong, J. Am. Chem. Soc. 2020, 142, 7265–7269.
- 40J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Acc. Chem. Res. 2017, 50, 1654–1662.
- 41Y. Hayashi, Chem. Sci. 2016, 7, 866–880.
- 42D. J. Berry, J. W. Steed, Adv. Drug Delivery Rev. 2017, 117, 3–24.
- 43D. Tan, Z.i X. Ng, Y. Sim, R. Ganguly, F. García, CrystEngComm 2018, 20, 5998–6004.
- 44C. R. Taylor, G. M. Day, Cryst. Growth Des. 2018, 18, 892–904.
- 45X. Shi, F. León, Y. Sim, S. Quek, G. Hum, Y. X. J. Khoo, Z. X. Ng, M. Y. Par, H. C. Ong, V. K. Singh, R. Ganguly, J. K. Clegg, J. Díaz, F. García, Angew. Chem. Int. Ed. 2020, 59, 22100–22108.
- 46M. Paul, S. Chakraborty, G. R. Desiraju, J. Am. Chem. Soc. 2018, 140, 2309–2315.
- 47N. A. Mir, R. Dubey, G. R. Desiraju, Accounts Chem. Res. 2019, 52, 2210–2220.
- 48S. Guan, G. Zhao, Y. Sun, Z. Tang, J. Pan, J. Wang, Z. Ji, X. Wang, CrystEngComm 2023, 25, 2655–2661.
- 49A. Abe, K. Goushi, M. Mamada, C. Adachi, Adv. Mater. 2024, 36, e2211160.
- 50W. Ji, B. Xue, S. Bera, S. Guerin, L. J. W. Shimon, Q. Ma, S. A. M. Tofail, D. Thompson, Y. Cao, W. Wang, E. Gazit, Mater. Today. Chem. 2021, 42, 29–40.
- 51J. C. Liu, T. Li, H. Yu, J. Y. Huang, P. X. Li, Z. Y. Ruan, P. Y. Liao, C. Ou, Y. Feng, M. L. Tong, Angew. Chem. Int. Ed. 2025, 64, e202413805.
- 52M.-P. Zhuo, J.-J. Wu, X.-D. Wang, Y.-C. Tao, Y. Yuan, L.-S. Liao, Nat. Commun. 2019, 10, 3839.
- 53J. Vainauskas, F. Topić, O. S. Bushuyev, C. J. Barrett, T. Friščić, Chem. Commun. 2020, 56, 15145–15148.
- 54T. Lu, Q. Chen, Compr. Comput. Chem. 2024, 2, 240–264.
10.1016/B978-0-12-821978-2.00076-3 Google Scholar
- 55S. Emamian, T. Lu, H. Kruse, H. Emamian, J. Comput. Chem. 2019, 40, 2868–2881.
- 56M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19–32.
- 57T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 58X. Chen, S. Zhang, Y. Jiang, G. He, M. Zhang, J. Wang, Z. Deng, H. Wang, J. W. Y. Lam, L. Hu, B. Zhong Tang, Angew. Chem. Int. Ed. 2024, 63, e202402175.
- 59S. Allu, A. Garai, V. V. Chernyshev, A. K. Nangia, Cryst. Growth Des. 2022, 22, 4165–4181.
- 60C. Zhang, Z. Ning, Z. Gong, L. Zhou, L. Xu, F. He, Z. Gao, J. Y. Y. Heng, S. Du, J. Ouyang, Cryst. Growth Des. 2025, 25, 2465–2475.
- 61R. Liantonio, P. Metrangolo, T. Pilati, G. Resnati, A. Stevenazzi, Cryst. Growth Des. 2003, 3, 799–803.
- 62S. Ghosh, C. M. Reddy, Angew. Chem. Int. Ed. 2012, 51, 10319–10323. Angew. Chem. 2012, 124, 10465–10469.
- 63A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res. 2014, 47, 2514–2524.
- 64H. Jain, D. Sutradhar, S. Roy, G. R. Desiraju, Angew. Chem. Int. Ed. 2021, 60, 12841–12846.
- 65J. Vainauskas, A. Wahrhaftig-Lewis, T. Friščić, Angew. Chem. Int. Ed. 2024, 63, e202408053.
- 66S. Roy, R. Gaur, M. Paul, M. Rajkumar, G. R. Desiraju, Cryst. Growth Des. 2022, 22, 7578–7589.
- 67M. Rajkumar, Cryst. Growth Des. 2021, 21, 3547–3553.
- 68S. Zhao, J. X. Zhang, C. F. Xu, Y. Ma, J. H. Luo, H. Lin, Y. Shi, X. D. Wang, L. S. Liao, Angew. Chem. Int. Ed. 2024, 63, e202412712.
- 69G. S. Papaefstathiou, A. J. Kipp, L. R. MacGillivray, Chem. Commun. 2001, 2462–2463. 10.1039/b106584j
- 70R. Dubey, M. S. Pavan, T. N. Guru Row, G. R. Desiraju, IUCrJ 2014, 1, 8–18.
- 71P. Ganguly, G. R. Desiraju, Chem. Asian J. 2008, 3, 868–880.
- 72S. Ghorai, J. C. Sumrak, K. M. Hutchins, D.-K. Bučar, A. V. Tivanski, L. R. MacGillivray, Chem. Sci. 2013, 4, 4304.
- 73Y. Jiang, Z. Yang, J. Guo, H. Li, Y. Liu, Y. Guo, M. Li, X. Pu, Nat. Commun. 2021, 12, 5950.
- 74J. Guo, S. Yang, C. Wang, J. Liu, Y. Guo, Z. Yang, X. Zhao, X. Pu, Cryst. Growth Des. 2024, 24, 8704–8714.
- 75K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547–555.
- 76M. I. Jordan, T. M. Mitchell, Science 2015, 349, 255–260.
- 77J. G. P. Wicker, L. M. Crowley, O. Robshaw, E. J. Little, S. P. Stokes, R. I. Cooper, S. E. Lawrence, CrystEngComm 2017, 19, 5336–5340.
- 78M. Przybyłek, T. Jeliński, J. Słabuszewska, D. Ziółkowska, K. Mroczyńska, P. Cysewski, Cryst. Growth Des. 2019, 19, 3876–3887.
- 79D. Wang, Z. Yang, B. Zhu, X. Mei, X. Luo, Cryst. Growth Des. 2020, 20, 6610–6621.
- 80M. H. S. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604–610.
- 81B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360–365.
- 82Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436–444.
- 83J. J. Devogelaer, H. Meekes, P. Tinnemans, E. Vlieg, R. de Gelder, Angew. Chem. Int. Ed. 2020, 59, 21711–21718.
- 84T. Ameri, P. Khoram, J. Min, C. J. Brabec, Adv. Mater. 2013, 25, 4245–4266.
- 85N. Gasparini, A. Salleo, I. McCulloch, D. Baran, Nat. Rev. Mater. 2019, 4, 229–242.
- 86M. Günther, N. Kazerouni, D. Blätte, J. D. Perea, B. C. Thompson, T. Ameri, Nat. Rev. Mater. 2023, 8, 456–471.