Selective CO Electroreduction to Multicarbon Oxygenates Over Atomically Dispersed Cu–Ag Sites in Alkaline Membrane Electrode Assembly Electrolyzer
Xinhui Guo
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Tianfu Liu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Both authors contributed equally to this work.
Search for more papers by this authorYanpeng Song
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Rongtan Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Dr. Pengfei Wei
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZiqi Liao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZichao Wu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Dunfeng Gao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorProf. Dr. Qiang Fu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoxiong Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Department of Chemistry, Shanghai Key Laboratory of Electrochemical and Thermochemical Conversion for Resources Recycling, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Dr. Xinhe Bao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorXinhui Guo
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Tianfu Liu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Both authors contributed equally to this work.
Search for more papers by this authorYanpeng Song
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Rongtan Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Dr. Pengfei Wei
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZiqi Liao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZichao Wu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Dunfeng Gao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorProf. Dr. Qiang Fu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoxiong Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Department of Chemistry, Shanghai Key Laboratory of Electrochemical and Thermochemical Conversion for Resources Recycling, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Dr. Xinhe Bao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorGraphical Abstract
Atomically dispersed Cu–Ag sites on the catalyst surface promote the *OH cleavage of *COCOH toward *COO, thereby enhancing the selectivity of C2+ oxygenates from CO electroreduction. CO electrolysis over the optimized CuAg catalyst achieves a Faradaic efficiency of 71.4% for C2+ oxygenates at a current density of 2.5 A cm−2 in alkaline membrane electrode assembly electrolyzer.
Abstract
Electrochemical carbon monoxide reduction reaction (CORR) to produce multicarbon (C2+) oxygenates using renewable electricity is a promising carbon utilization pathway. However, the performance of this process suffers from low C2+ oxygenates selectivity and insufficient current density. Here, we employed a Cu–Ag bimetallic strategy to enhance the selectivity of C2+ oxygenates from CORR in alkaline membrane electrode assembly electrolyzer at ampere-level current densities. The Cu–Ag catalysts prepared by magnetron sputtering feature atomically dispersed Cu–Ag sites on the catalyst surface, which are key to promoting the formation of C2+ oxygenates. Increasing Ag content favors C2+ oxygenates formation while inhibiting ethylene production. The optimized Cu2Ag catalyst achieved Faradaic efficiency of 71.4% for C2+ oxygenates at 2.5 A cm−2. In situ spectroscopy and density functional theory calculations revealed that atomically dispersed Cu–Ag sites on the catalyst surface promote the dissociation of *COCOH to *CCO, thus favoring C2+ oxygenates formation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202507062-sup-0001-SuppMat.docx10.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Jouny, W. Luc, F. Jiao, Nat. Catal. 2018, 1, 748–755.
- 2W. Ma, X. He, W. Wang, S. Xie, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2021, 50, 12897–12914.
- 3C. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504–507.
- 4C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783–787.
- 5Y. Shi, M. Hou, J. Li, L. Li, Z. Zhang, Acta Phys.-Chim. Sin. 2022, 38, 2206020.
- 6J. A. Rabinowitz, M. W. Kanan, Nat. Commun. 2020, 11, 5231.
- 7X. Ding, J. Zhang, Y. Li, eScience 2023, 3, 100137.
- 8H. Li, P. Wei, T. Liu, M. Li, C. Wang, R. Li, J. Ye, Z.-Y. Zhou, S.-G. Sun, Q. Fu, D. Gao, G. Wang, X. Bao, Nat. Commun. 2024, 15, 4603.
- 9W. Ma, S. Xie, B. Zhang, X. He, X. Liu, B. Mei, F. Sun, Z. Jiang, L. Lin, Q. Zhang, B. Ren, G. Fu, X. Hu, Y. Wang, Chem 2023, 9, 2161–2177.
- 10Y. Ji, Z. Chen, R. Wei, C. Yang, Y. Wang, J. Xu, H. Zhang, A. Guan, J. Chen, T.-K. Sham, J. Luo, Y. Yang, X. Xu, G. Zheng, Nat. Catal. 2022, 5, 251–258.
- 11L. Ding, N. Zhu, Y. Hu, Z. Chen, P. Song, T. Sheng, Z. Wu, Y. Xiong, Angew. Chem. Int. Ed. 2022, 61, e202209268.
- 12D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang, Y. Wei, Appl. Catal., B 2021, 281, 119426.
- 13C. P. O'Brien, R. K. Miao, A. Shayesteh Zeraati, G. Lee, E. H. Sargent, D. Sinton, Chem. Rev. 2024, 124, 3648–3693.
- 14J. Li, H. Xiong, X. Liu, D. Wu, D. Su, B. Xu, Q. Lu, Nat. Commun. 2023, 14, 698.
- 15X. Wang, P. Ou, A. Ozden, S.-F. Hung, J. Tam, C. M. Gabardo, J. Y. Howe, J. Sisler, K. Bertens, F. P. García de Arquer, R. K. Miao, C. P. O'Brien, Z. Wang, J. Abed, A. S. Rasouli, M. Sun, A. H. Ip, D. Sinton, E. H. Sargent, Nat. Energy 2022, 7, 170–176.
- 16J. Jin, J. Wicks, Q. Min, J. Li, Y. Hu, J. Ma, Y. Wang, Z. Jiang, Y. Xu, R. Lu, G. Si, P. Papangelakis,, M. Shakouri, Q. Xiao, P. Ou, X. Wang, Z. Chen, W. Zhang, K. Yu, J. Song, X. Jiang, P. Qiu, Y. Lou, D. Wu, Y. Mao, A. Ozden, C. Wang, B. Y. Xia, X. Hu, V. P. Dravid, Y.-M. Yiu, T.-K. Sham, Z. Wang, D. Sinton, L. Mai, E. H. Sargent, Nature 2023, 617, 724–729.
- 17J.-J. Lv, R. Yin, L. Zhou, J. Li, R. Kikas, T. Xu, Z.-J. Wang, H. Jin, X. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202207252.
- 18P. Wei, D. Gao, T. Liu, H. Li, J. Sang, C. Wang, R. Cai, G. Wang, X. Bao, Nat. Nanotechnol. 2023, 18, 299–306.
- 19J. Li, C. Li, J. Hou, W. Gao, X. Chang, Q. Lu, B. Xu, J. Am. Chem. Soc. 2022, 144, 20495–20506.
- 20J. Li, A. Xu, F. Li, Z. Wang, C. Zou, C. M. Gabardo, Y. Wang, A. Ozden, Y. Xu, D.-H. Nam, Y. Lum, J. Wicks, B. Chen, Z. Wang, J. Chen, Y. Wen, T. Zhuang, M. Luo, X. Du, T.-K. Sham, B. Zhang, E. H. Sargent, D. Sinton, Nat. Commun. 2020, 11, 3685.
- 21Y. Wang, Z. Wang, C.-T. Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.-S. Tan, C. M. Gabardo, M. Luo, H. Zhou, F. Li, Y. Lum, C. McCallum, Y. Xu, M. Liu, A. Proppe, A. Johnston, P. Todorovic, T.-T. Zhuang, D. Sinton, S. O. Kelley, E. H. Sargent, Nat. Catal. 2020, 3, 98–106.
- 22C. Du, J. P. Mills, A. G. Yohannes, W. Wei, L. Wang, S. Lu, J.-X. Lian, M. Wang, T. Guo, X. Wang, H. Zhou, C.-J. Sun, J. Z. Wen, B. Kendall, M. Couillard, H. Guo, Z. Tan, S. Siahrostami, Y. A. Wu, Nat. Commun. 2023, 14, 6142.
- 23Y. C. Li, Z. Wang, T. Yuan, D.-H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arquer, Y. Wang, C.-T. Dinh, O. Voznyy, D. Sinton, E. H. Sargent, J. Am. Chem. Soc. 2019, 141, 8584–8591.
- 24P. Wei, H. Li, L. Lin, D. Gao, X. Zhang, H. Gong, G. Qing, R. Cai, G. Wang, X. Bao, Sci. China Chem. 2020, 63, 1711–1715.
- 25N. Meng, Z. Wu, Y. Huang, J. Zhang, M. Chen, H. Ma, H. Li, S. Xi, M. Lin, W. Wu, S. Han, Y. Yu, Q.-H. Yang, B. Zhang, K. P. Loh, Nat. Commun. 2024, 15, 3892.
- 26R. Li, X. Xu, B. Zhu, X.-Y. Li, Y. Ning, R. Mu, P. Du, M. Li, H. Wang, J. Liang, Y. Chen, Y. Gao, B. Yang, Q. Fu, X. Bao, Nat. Commun. 2021 12, 1406.
- 27G. Moretti, H. P. Beck, Surf. Interface Anal. 2022, 54, 803–812.
- 28Y. Zhao, X. Chang, A. S. Malkani, X. Yang, L. Thompson, F. Jiao, B. Xu, J. Am. Chem. Soc. 2020, 142, 9735–9743.
- 29X. Chang, Y. Zhao, B. Xu, ACS Catal. 2020, 10, 13737–13747.
- 30M. Chen, D. Liu, Y. Chen, D. Liu, X. Du, J. Feng, P. Zhou, B. Zi, Q. Liu, K. H. Lo, S. Chen, S. Wang, W. F. Ip, H. Pan, Appl. Mater. Today 2022, 26, 101343.
- 31N. Bodappa, M. Su, Y. Zhao, J.-B. Le, W.-M. Yang, P. Radjenovic, J.-C. Dong, J. Cheng, Z.-Q. Tian, J.-F. Li, J. Am. Chem. Soc. 2019, 141, 12192–12196.
- 32C. M. Gunathunge, X. Li, J. Li, R. P. Hicks, V. J. Ovalle, M. M. Waegele, J. Phys. Chem. C 2017, 121, 12337–12344.
- 33X. Wang, Y. Zhang, J. Shi, J. Cai, G. Liu, J. Tang, J. Phys. Chem. C 2023, 127, 13034–13043.
- 34D. Zhong, Z.-J. Zhao, Q. Zhao, D. Cheng, B. Liu, G. Zhang, W. Deng, H. Dong, L. Zhang, J. Li, J. Li, J. Gong, Angew. Chem. Int. Ed. 2021, 60, 4879–4885.
- 35J. Gao, H. Zhang, X. Guo, J. Luo, S. M. Zakeeruddin, D. Ren, M. Grätzel, J. Am. Chem. Soc. 2019, 141, 18704–18714.
- 36Y. Zhao, X.-G. Zhang, N. Bodappa, W.-M. Yang, Q. Liang, P. M. Radjenovica, Y.-H. Wang, Y.-J. Zhang, J.-C. Dong, Z.-Q. Tian, J.-F. Li, Energy Environ. Sci. 2022, 15, 3968–3977.
- 37P. Zhu, C. Xia, K. Jiang, G. Gao, X. Zhang, Y. Xia, Y. Lei, H. N. Alshareef, T. P. Senftle, H. Wang, Proc. Nat. Acad. Sci. 2021, 118, e2010868118.
- 38H. Peng, Q. Li, M. Hu, L. Xiao, J. Lu, L. Zhuang, J. Power Sources 2018, 390, 165–167.
- 39D. Briggs, Handbook of X-ray photoelectron spectroscopy, (Eds.: C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg), Perkin-Elmer Corp, Physical Electronics Division, Eden Prairie, Minnesota, USA 1979, Vol. 3, pp. 1–190.
- 40G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 41G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 42B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413–7421.
- 43Y. Zhang, W. Yang, Phys. Rev. Lett. 1998, 80, 890–890.
- 44P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 45G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758–1775.
- 46G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901–9904.
- 47A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311–1315.