Hydrogen-Bonded Organic Framework with Desolventization and Lithium-Rich Sites for High-Performance Lithium Metal Anodes
Songling Wu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorXiaomeng Lu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorYiwen Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorHaichao Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorMuhammad Ahsan Waseem
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorJunaid Aslam
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorYi Xu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorLi-Ping Lv
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorCorresponding Author
Yong Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Sino-European School of Technology of Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
E-mail: [email protected]
Search for more papers by this authorSongling Wu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorXiaomeng Lu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorYiwen Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorHaichao Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorMuhammad Ahsan Waseem
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorJunaid Aslam
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorYi Xu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorLi-Ping Lv
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Search for more papers by this authorCorresponding Author
Yong Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
Sino-European School of Technology of Shanghai University, 99 Shangda Road, Shanghai, 200444 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Effectively managing Li+ migration behaviors and addressing the issues of side reactions at the electrolyte–electrode interface is crucial for advancing high-performance lithium metal batteries (LMBs). Herein, this work introduces a two-dimensional hydrogen-bonded organic framework (HOF) enriched with multi-site H-bonding and lithiophilic sites for the first time to tailor the electronic structure and solvation chemistry in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) based electrolyte and stabilize the lithium metal anodes (LMAs) interface. Initially, the abundant lithiophilic sites (C═O, C═N) in the HOF coordinate with Li+, acting as key electron donors to optimize the electronic structure while also reducing the desolvation energy barrier when Li+ dissociates from the solvent sheath. Moreover, the multifunctional hydrogen bonding not only acts as the “appended manipulator” to anchor -NH2 to LiTFSI and reduces the adverse reactions at the LMAs interface but also mitigates the mechanical stress during lithium deposition. As evidenced by various in/ex situ characterizations, the HOF-modified lithium-metal symmetric batteries exhibit ultra-long cycling performance (11 000 h) and low voltage fluctuations at 3 mA cm−2. This unique strategy of hydrogen-bonded synergistic lithiophilic sites provides a new perspective on the design of artificial interfacial layers for stabilizing lithium metal batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202506892-sup-0001-SuppMat.docx4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Wu, C. Chen, L. H. J. Raijmakers, J. Liu, D. L. Danilov, R. A. Eichel, P. H. L. Notten, Energy Storage Mater. 2023, 57, 508–539.
- 2Y. Han, B. Liu, Z. Xiao, W. Zhang, X. Wang, G. Pan, Y. Xia, X. Xia, J. Tu, InfoMat 2021, 3, 155–174.
- 3X. R. Chen, B. C. Zhao, C. Yan, Q. Zhang, Adv. Mater. 2021, 33, 2004128.
- 4X. Tang, C. Liu, H. Wang, L. P. Lv, W. Sun, Y. Wang, Coord. Chem. Rev. 2023, 494, 215361.
- 5T. Liu, Y. Xu, H. Fang, L. Chen, J. Ying, M. Guo, Y. Wang, Q. Shen, X. Wang, Y. Wang, Z. Yu, J. Mater. Chem. A. 2024, 12, 2283–2293.
- 6C. Yan, R. Xu, Y. Xiao, J. F. Ding, L. Xu, B. Q. Li, J. Q. Huang, Adv. Funct. Mater. 2020, 30, 215361.
- 7G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 2014, 9, 618–623.
- 8Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu, D. Lu, C. Sun, X. Huang, T. Deng, L. Fan, L. Chen, X. Wang, X. Fan, Energy Environ. Sci. 2022, 15, 4349–4361.
- 9Q. He, Z. Li, M. Wu, M. Xie, F. Bu, H. Zhang, R. Yu, L. Mai, Y. Zhao, Adv. Mater. 2023, 35, 2302418.
- 10Y. Liu, D. Gao, H. Xiang, X. Feng, Y. Yu, Energy Fuels 2021, 35, 12921–12937.
- 11X. M. Lu, H. Wang, Y. Sun, Y. Xu, W. Sun, Y. Wu, Y. Zhang, C. Yang, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202409436.
- 12Z. Shadike, S. Tan, R. Lin, X. Cao, E. Hu, X. Q. Yang, Chem. Sci. 2022, 13, 1547–1568.
- 13Y. Cao, H. Fang, C. Guo, W. Sun, Y. Xu, Y. Wu, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202302143.
- 14F. Zhao, H. Liu, S. D. R. Mathe, A. Dong, J. Zhang, Nanomaterials 2017, 8, 15.
- 15D. Ma, Y. Wang, A. Liu, S. Li, C. Lu, C. Chen, Catalysts 2018, 8, 404.
- 16D. Xu, M. Liang, S. Qi, W. Sun, L. P. Lv, F. H. Du, B. Wang, S. Chen, Y. Wang, Y. Yu, ACS Nano. 2021, 15, 47–80.
- 17Y. Cao, Y. Sun, C. Guo, W. Sun, Y. Wu, Y. Xu, T. Liu, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202316208.
- 18L. Zhang, R. Wang, Z. Liu, J. Wan, S. Zhang, S. Wang, K. Hua, X. Liu, X. Zhou, X. Luo, X. Zhang, M. Cao, H. Kang, C. Zhang, Z. Guo, Adv. Mater. 2023, 35, e2210082.
- 19S. Xu, C. Wang, T. Song, H. Yao, J. Yang, X. Wang, J. Zhu, C. S. Lee, Q. Zhang, Adv. Sci. 2023, 10, e2304497.
- 20P. Liu, L. Miao, Z. Sun, X. Chen, Y. Si, Q. Wang, L. Jiao, Angew. Chem. Int. Ed. Engl. 2023, 62, e202312413.
- 21D. Luo, M. Li, Q. Ma, G. Wen, H. Dou, B. Ren, Y. Liu, X. Wang, L. Shui, Z. Chen, Chem. Soc. Rev. 2022, 51, 2917–2938.
- 22L. Tian, X. Xu, M. Liu, Z. Liu, Z. Liu, Langmuir 2021, 37, 3922–3928.
- 23J. Ding, J. He, L. Chen, Y. Sun, Y. Xu, L. P. Lv, Y. Wang, Angew. Chem. Int. Ed. 2025, 64, e202416271.
- 24J. X. Ma, J. Li, Y. F. Chen, R. Ning, Y. F. Ao, J. M. Liu, J. Sun, D. X. Wang, Q. Q. Wang, J. Am. Chem. Soc. 2019, 141, 3843–3848.
- 25L. I. FitzGerald, J. F. Olorunyomi, R. Singh, C. M. Doherty, ChemSusChem 2022, 15, e202201136.
- 26H. Zhang, C. Gu, M. S. Yao, S. Kitagawa, Adv. Energy Mater. 2022, 12, 2100321.
- 27Y. Cao, Q. Xu, Y. Sun, J. Shi, Y. Xu, Y. Tang, X. Chen, S. Yang, Z. Jiang, H. D. Um, X. Li, Y. Wang, Proc. Natl. Acad. Sci. USA 2024, 121, e2315407121.
- 28J. Xue, Z. Sun, B. Sun, C. Zhao, Y. Yang, F. Huo, A. Cabot, H. K. Liu, S. Dou, ACS Nano. 2024, 18, 17439–17468.
- 29Q. Xu, S. Tao, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. Engl. 2020, 59, 4557–4563.
- 30S. W. Ke, Y. Wang, J. Su, K. Liao, S. Lv, X. Song, T. Ma, S. Yuan, Z. Jin, J.-L. Zuo, J. Am. Chem. Soc. 2022, 144, 8267–8277.
- 31W. H. Huang, X. M. Li, X. F. Yang, X. X. Zhang, H. H. Wang, H. Wang, Mater. Chem. Front. 2021, 5, 3593–3613.
- 32Y. Deng, Q. Zhang, D. H. Qu, ACS Mater. Lett. 2023, 5, 480–490.
- 33M. H. Chan, V. W. Yam, J. Am. Chem. Soc. 2022, 144, 22805–22825.
- 34R. Shah, S. Ali, F. Raziq, S. Ali, P. M. Ismail, S. Shah, R. Iqbal, X. Wu, W. He, X. Zu, A. Zada, Adnan, F. M., A. Vinu, S. H. Jhung, J. Yi, L. Qiao, Coord. Chem. Rev. 2023, 477, 214968.
- 35J. Chu, Z. Liu, J. Yu, L. Cheng, H. G. Wang, F. Cui, G. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202314411.
- 36X. Liu, Y. Ye, X. He, Q. Niu, B. Chen, Z. Li, Angew. Chem. Int. Ed. 2024, 63, e202400195.
- 37F. Song, Z. Wang, T. Ma, L. Chen, H. Li, F. Wu, Nano Energy 2023, 117, 108893.
- 38T. M. Klapötke, F. A. Martin, N. T. Mayr, J. Stierstorfer, Z. Anorg. Allg. Chem. 2010, 636, 2555–2564.
- 39J. Zhang, R. Wang, X. Yang, W. Lu, X. Wu, X. Wang, H. Li, L. Chen, Nano Lett. 2012, 12, 2153–2157.
- 40R. Xu, X. Q. Zhang, X. B. Cheng, H. J. Peng, C. Z. Zhao, C. Yan, J. Q. Huang, Adv. Funct. Mater. 2018, 28, 1705838.
- 41F. Meng, Y. Liu, Z. Ding, L. Xu, H. Wang, X. Xu, X. Liu, T. Lu, L. Pan, Small. 2023, 20, 2309353.
- 42J. Tang, R. Yang, Y. Peng, H. Lin, X. He, Y. Song, K. Wu, Y. Kang, L. Yang, Small. 2024, 20, e2307827.
- 43S. Kim, P. N. Didwal, J. Fiates, J. A. Dawson, R. S. Weatherup, M. De Volder, ACS Energy Lett. 2024, 9, 4753–4760.
- 44X. M. Lu, Y. Cao, Y. Sun, H. Wang, W. Sun, Y. Xu, Y. Wu, C. Yang, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202320259.
- 45C. Zhang, J. Xie, C. Zhao, Y. Yang, Q. An, Z. Mei, Q. Xu, Y. Ding, G. Zhao, H. Guo, Adv. Mater. 2023, 35, e2304511.
- 46K.-S. Oh, S. Park, J. S. Kim, Y. Yao, J. H. Kim, J. Guo, D. H. Seo, S. Y. Lee, ACS Energy Lett. 2023, 8, 2463–2474.
- 47X. Wang, J. Tang, W. Tang, Adv. Funct. Mater. 2022, 32, 2200517.
- 48D. Xiao, Q. Li, D. Luo, R. Gao, Z. Li, M. Feng, T. Or, L. Shui, G. Zhou, X. Wang, Z. Chen, Adv. Funct. Mater. 2021, 31, 2011109.
- 49A. Sun, H. Tu, Z. Sun, Z. He, Y. Wang, J. Wang, Y. Zheng, F. Zhu, L. Wang, F. Mushtaq, P. Xue, J. Liu, M. Liu, ACS Energy Lett. 2024, 9, 2545–2553.
- 50C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen, M. Sun, S. Xu, Y. Wu, C. Zhang, J. Ma, C. Wang, W. Hu, Angew. Chem. Int. Ed. Engl. 2021, 60, 10871–10879.
- 51D. Guo, S. Thomas, J. K. El-Demellawi, Z. Shi, Z. Zhao, C. G. Canlas, Y. Lei, J. Yin, Y. Zhang, M. N. Hedhili, M. Arsalan, Y. Zhu, O. M. Bakr, O. F. Mohammed, H. N. Alshareef, Energy Environ. Sci. 2024, 17, 8151–8161.
- 52Y. Yang, C. Zhang, G. Zhao, Q. An, Z.y. Mei, Y. Sun, Q. Xu, X. Wang, H. Guo, Adv. Energy Mater. 2023, 13, 2300725.
- 53Z. Li, L. Wang, M. Yu, Y. Liu, B. Liu, Z. Sun, W. Hu, G. Zhu, ACS Appl. Mater. Interfaces. 2022, 14, 53798–53807.
- 54P. Zhao, Y. Zhang, B. Sun, R. Qiao, C. Li, P. Hai, Y. Wang, F. Liu, J. Song, Angew. Chem. Int. Ed. Engl. 2024, 63, e202317016.
- 55Y. Yang, S. Yao, Z. Liang, Y. Wen, Z. Liu, Y. Wu, J. Liu, M. Zhu, ACS Energy Lett. 2022, 7, 885–896.
- 56C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen, M. Sun, S. Xu, Y. Wu, C. Zhang, J. Ma, C. Wang, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 10871–10879.