Unlocking Durable and Sustainable Zinc–Iodine Batteries via Molecularly Engineered Polyiodide Reservoirs
Leiqian Zhang
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorKe Luo
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJiaming Gong
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Yazhou Zhou
Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800 Czech Republic
Search for more papers by this authorHele Guo
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorYi Yu
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 P.R. China
Search for more papers by this authorProf. Guanjie He
Department of Chemistry, University College London, London, WC1H 0AJ UK
Search for more papers by this authorProf. Jean-François Gohy
Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve, 1348 Belgium
Search for more papers by this authorProf. Ivan P. Parkin
Department of Chemistry, University College London, London, WC1H 0AJ UK
Search for more papers by this authorProf. Johan Hofkens
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Qing He
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Tianxi Liu
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P.R. China
Search for more papers by this authorProf. Klaus Müllen
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Dr. Feili Lai
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLeiqian Zhang
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorKe Luo
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJiaming Gong
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Yazhou Zhou
Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800 Czech Republic
Search for more papers by this authorHele Guo
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Search for more papers by this authorYi Yu
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 P.R. China
Search for more papers by this authorProf. Guanjie He
Department of Chemistry, University College London, London, WC1H 0AJ UK
Search for more papers by this authorProf. Jean-François Gohy
Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve, 1348 Belgium
Search for more papers by this authorProf. Ivan P. Parkin
Department of Chemistry, University College London, London, WC1H 0AJ UK
Search for more papers by this authorProf. Johan Hofkens
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Qing He
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Tianxi Liu
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P.R. China
Search for more papers by this authorProf. Klaus Müllen
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Dr. Feili Lai
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A recyclable “polyiodide reservoir”, engineered by the nitrogen-active site densities within covalent organic cages, is proposed as the iodine host. The resulting zinc–iodine battery demonstrates a capacity retention of 90.1% after 4000 cycles at 5 C and maintains 85.4% of its initial capacity after three reuse cycles.
Abstract
Zinc–iodine batteries (ZIBs) are promising candidates for safe and sustainable energy storage but are hindered by polyiodide shuttling, leading to rapid capacity decay and limited cyclability. In this work, we propose a “polyiodide reservoirs” concept, utilizing iodophilic covalent organic cages to confine polyiodide through multiple noncovalent interactions. By precisely engineering the nitrogen-active site densities around 3D cavities, these cages evolve from open to near-enclosed structure, achieving molecular-level polyiodide entrapment. The optimized superphane cage (18 N-active sites) enables a ZIB with 90.1% capacity retention after 4000 cycles at 5 C, even under extreme conditions (58.9 wt% iodine content within the cage and an iodine area loading of 3.7 mg cm−2 in the cathode). Importantly, the cage's solubility-driven regeneration capability retains 85.4% initial capacity over three reuse cycles. This work establishes covalent organic superphanes as a transformative platform for long-life ZIBs, offering a dual solution to shuttle suppression and electrode sustainability through structural confinement and dynamic recyclability.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202506822-supp-0001-SuppMat.docx17.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. W. D. Gourley, R. Brown, B. D. Adams, D. Higgins, Joule 2023, 7, 1415–1436.
- 2J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li, H. Xu, R. Ye, Z. Tie, L. Sun, Z. Jin, Chem. Soc. Rev. 2024, 53, 10335–10369.
- 3W. Xu, Y. Wang, Nano-Micro Lett. 2019, 11, 90.
- 4W. Wan, D. Sun, W. Ma, Y. Cao, H. Chai, Compos. Commun. 2024, 48, 101910.
- 5J. Li, A. Azizi, S. Zhou, S. Liu, C. Han, Z. Chang, A. Pan, G. Cao, eScience 2025, 5, 100294.
- 6H. Jia, K. Liu, Y. Lam, B. Tawiah, J. H. Xin, W. Nie, S.-x. Jiang, Adv. Fiber Mater. 2023, 5, 36–58.
- 7Y. Ouyang, W. Zong, X. Gao, S. X. Leong, J. R. T. Chen, Y. Dai, H. Dong, I. Y. Phang, P. R. Shearing, G. He, Y.-E. Miao, T. Liu, X. Y. Ling, Angew. Chem. Int. Ed. 2025, e202504965, https://doi.org/10.1002/anie.202504965.
- 8L. Zhang, H. Guo, W. Zong, Y. Huang, J. Huang, G. He, T. Liu, J. Hofkens, F. Lai, Energy Environ. Sci. 2023, 16, 4872–4925.
- 9D. Lin, Y. Li, Adv. Mater. 2022, 34, 2108856.
- 10L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian, M. Zhang, J. Wang, G. He, T. Liu, J. Hofkens, D. J. L. Brett, F. Lai, Adv. Energy Mater. 2023, 13, 2203790.
- 11Y. Xu, M. Zhang, R. Tang, S. Li, C. Sun, Z. Lv, W. Yang, Z. Wen, C. Li, X. Li, Y. Yang, Energy Environ. Sci. 2024, 17, 6656–6665.
- 12L. Zhang, H. Ding, H. Gao, J. Gong, H. Guo, S. Zhang, Y. Yu, G. He, T. Deng, I. P. Parkin, J. Hofkens, X. Fan, F. Lai, T. Liu, Energy Environ. Sci. 2025, 18, 2462–2473.
- 13J. Zhang, C. Qiu, C. Zhou, S. Guo, Y. Gao, F. Li, X. Wang, Z. Zhao, Z. Xing, J. Li, P. Rao, Z. Kang, X. Tian, X. Shi, Nano Energy 2025, 133, 110519.
- 14H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao, G. Li, X. S. Li, K. S. Han, K. T. Mueller, V. Sprenkle, J. Liu, ACS Energy Lett. 2017, 2, 2674–2680.
- 15H. Yu, X. Cai, Z. Wang, Z. Yang, W. Liu, M. Ren, J. Yao, Q. Liu, C. Qiao, Colloid. Surf. A 2024, 684, 133239.
- 16H. X. Dang, A. J. Sellathurai, D. P. J. Barz, Energy Storage Mater. 2023, 55, 680–690.
- 17W. Qu, J. Zhu, G. Cao, S. Chen, Y. Tan, B. Chen, M. Zhang, Small 2024, 20, e2310475.
- 18J. Sun, Z. Wang, J. Zhang, D. Wang, J. Energy Storage 2024, 90, 111716.
- 19X. Yang, H. Fan, F. Hu, S. Chen, K. Yan, L. Ma, Nano-Micro Lett. 2023, 15, 126.
- 20X. Zhang, X. Li, M. Sun, Y. Hou, M. Li, C. Chen, D. Yu, G. Zhao, J. Electroanal. Chem. 2024, 952, 117965.
- 21L. Wei, X. Zhang, X. Li, C. Chen, D. Yu, G. Zhao, J. Electroanal. Chem. 2024, 967, 118452.
- 22S. Chai, J. Yao, Y. Wang, J. Zhu, J. Jiang, Chem. Eng. J. 2022, 439, 135676.
- 23S. Niu, B. Zhao, D. Liu, ACS Appl. Mater. Inter. 2023, 15, 25558–25566.
- 24Y. Zhao, Y. Wang, W. Xue, R. Cheng, X. Zheng, G. Zhu, D. Hu, H. Huang, C. Hu, D. Liu, Adv. Mater. 2024, 36, e2403097.
- 25C. Guo, Y. Cao, Y. Gao, C. Zhi, Y. X. Wang, Y. Luo, X. J. Yang, X. Luo, Adv. Funct. Mater. 2024, 34, 2314189.
- 26M. Cui, H. Zhao, D. Yin, N. Gao, Y. Zhang, L. Zhao, Y. Wei, M. Liu, K. Xi, S. Ding, Energy Storage Mater. 2024, 69, 103372.
- 27Y. Chen, X. Huang, S. Zhang, S. Li, S. Cao, X. Pei, J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2016, 138, 10810–10813.
- 28Y. Kong, X. He, H. Wu, Y. Yang, L. Cao, R. Li, B. Shi, G. He, Y. Liu, Q. Peng, C. Fan, Z. Zhang, Z. Jiang, Angew. Chem. Int. Ed. 2021, 60, 17638–17646.
- 29H. Wang, Y. Jin, N. Sun, W. Zhang, J. Jiang, Chem. Soc. Rev. 2021, 50, 8874–8886.
- 30G. Monta-Gonzalez, F. Sancenon, R. Martinez-Manez, V. Marti-Centelles, Chem. Rev. 2022, 122, 13636–13708.
- 31Z. Zhu, D. Luo, L. Wei, J. Chen, T. Jia, X. Chi, X. Guo, Energy Storage Mater. 2025, 75, 103994.
- 32L. Zhang, M. Zhang, H. Guo, Z. Tian, L. Ge, G. He, J. Huang, J. Wang, T. Liu, I. P. Parkin, Adv. Sci. 2022, 9, 2105598.
- 33L. Zhang, J. Ge, T. Wang, H. Guo, S. Chen, Y. E. Miao, E. Debroye, G. He, I. P. Parkin, J. Hofkens, F. Lai, T. Liu, Nano Lett. 2024, 24, 3036–3043.
- 34J. Lee, W. Lee, S. Back, S. Y. Yi, S. Lee, S. Kim, J. Moon, D.-Y. Koh, K. Kim, S. Back, J. Lee, EES Catalysis 2024, 2, 276–285.
- 35X. Miao, Q. Chen, Y. Liu, X. Zhang, Y. Chen, J. Lin, S. Chen, Y. Zhang, Electrochim. Acta 2022, 415, 140206.
- 36W. Zhou, A. Li, M. Zhou, Y. Xu, Y. Zhang, Q. He, Nat. Commun. 2023, 14, 5388.
- 37W. Zhou, A. Li, P. A. Gale, Q. He, Cell Rep. Phys. Sci. 2022, 3, 100875.
- 38A. Li, Y. Liu, W. Zhou, Y. Jiang, Q. He, Tetrahedron Chem 2022, 1, 100006.
10.1016/j.tchem.2022.100006 Google Scholar
- 39A. Li, Y. Liu, K. Luo, Q. He, CCS Chem 2024, 6, 2882–2894.
- 40G. S. Foo, J. J. Lee, C. H. Chen, S. E. Hayes, C. Sievers, C. W. Jones, ChemSusChem 2017, 10, 266–276.
- 41R. Guo, Y. Liu, Y. Huo, A. Zhang, J. Hong, Y. Ai, J. Colloid Inter. Sci. 2022, 606, 1617–1626.
- 42Z. Li, X. Wu, X. Yu, S. Zhou, Y. Qiao, H. Zhou, S. G. Sun, Nano Lett. 2022, 22, 2538–2546.
- 43L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 2021, 60, 3791–3798.
- 44M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma, J. Zhang, J. Am. Chem. Soc. 2022, 144, 21683–21691.
- 45Z. Chen, J. Zhang, C. Zhou, S. Guo, D. Wu, Z. Zhao, Z. Wang, J. Li, Z. Xing, P. Rao, Z. Kang, X. Tian, X. Shi, Adv. Energy Mater. 2025, 15, 2404814.
- 46F. Li, C. Zhou, J. Zhang, Y. Gao, Q. Nan, J. Luo, Z. Xu, Z. Zhao, P. Rao, J. Li, Z. Kang, X. Shi, X. Tian, Adv. Mater. 2024, 36, 2408213.