Covalent Organic Framework Nanosheets for the Assembly of Efficient Membrane Bioreactors
Jingxu Han
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Both authors contributed equally to this work.
Search for more papers by this authorZhiwei Xing
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Both authors contributed equally to this work.
Search for more papers by this authorQing Guo
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDi Wu
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhuozhi Lai
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiaoxiao Cheng
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Zhifeng Dai
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Yubing Xiong
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorXiangju Meng
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Shengqian Ma
Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton TX, 76201 USA
Search for more papers by this authorProf. Feng-Shou Xiao
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Qi Sun
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJingxu Han
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Both authors contributed equally to this work.
Search for more papers by this authorZhiwei Xing
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Both authors contributed equally to this work.
Search for more papers by this authorQing Guo
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDi Wu
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhuozhi Lai
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiaoxiao Cheng
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Zhifeng Dai
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Yubing Xiong
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorXiangju Meng
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Shengqian Ma
Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton TX, 76201 USA
Search for more papers by this authorProf. Feng-Shou Xiao
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Qi Sun
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
We present a layer-by-layer assembly method to trap enzymes between covalent organic framework (COF) nanosheets instead for the construction of membrane bioreactors. This design boosts mass transfer, shields enzymes from harmful by-products, and enables rapid substrate conversion (complete in 7.95 s)—achieving 1018× higher activity than free enzymes. The reactor maintains stability under continuous use and works with diverse enzymes/COFs, offering a versatile platform for high-performance biocatalysts.
Abstract
Immobilizing fragile enzymes in porous materials holds significant potential for biocatalysis but encounters challenges such as mismatched enzyme size and pore structure of host materials, along with harsh assembly conditions that can denature enzymes. Herein, we present a versatile strategy for constructing membrane bioreactors through water-mediated, vacuum-assisted layer-by-layer assembly of covalent organic framework (COF) nanosheets with enzymes. This method effectively addresses pore size limitations, preserves enzyme activity, and promotes convective transport of reactants to active sites, while shielding enzymes from harmful by-products through rapid transport in continuous membrane catalysis. The optimized bioreactor achieves a 1018-fold increase in relative activity compared to free enzymes in batch reactions, completing substrate conversion in just 7.95 s, and demonstrating enhanced stability.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202505797-sup-0001-SuppMat.docx74.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Huffman, A. Fryszkowska, O. Alvizo, M. Borra-Garske, K. R. Campos, K. A. Canada, P. N. Devine, D. Duan, J. H. Forstater, S. T. Grosser, H. M. Halsey, G. J. Hughes, J. Jo, L. A. Joyce, J. N. Kolev, J. Liang, K. M. Maloney, B. F. Mann, N. M. Marshall, M. McLaughlin, J. C. Moore, G. S. Murphy, C. C. Nawrat, J. Nazor, S. Novick, N. R. Patel, A. Rodriguez-Granillo, S. A. Robaire, E. C. Sherer, M. D. Truppo, et al., Science 2019, 366, 1255–1259.
- 2M. T. Reetz, G. Qu, Z. Sun, Nat. Synth. 2024, 3, 19–32.
- 3S. L. Lovelock, R. Crawshaw, S. Basler, C. Levy, D. Baker, D. Hilvert, A. P. Green, Nature 2022, 606, 49–58.
- 4R. Buller, S. Lutz, R. J. Kazlauskas, R. Snajdrova, J. C. Moore, U. T. Bornscheuer, Science 2023, 382, eadh8615.
- 5Y. Zhang, Z. Xiong, Y. Li, M. Wilson, K. E. Christensen, E. Jaques, P. Hernández-Lladó, J. Robertson, L. L. Wong, Nat. Synth. 2022, 1, 936–945.
- 6G. Chen, S. Huang, X. Ma, R. He, G. Ouyang, Nat. Protoc. 2023, 18, 2032–2050.
- 7C. Hu, Y. Bai, M. Hou, Y. Wang, L. Wang, X. Cao, C.-W. Chan, H. Sun, W. Li, J. Ge, K. Ren, Sci. Adv. 2020, 6, eaax5785.
- 8H. Lu, J. Ouyang, W.-Q. Liu, C. Wu, J. Li, Angew. Chem., Int. Ed. 2023, 62, e202312906.
- 9J. Ouyang, Z. Zhang, J. Li, C. Wu, Angew. Chem., Int. Ed. 2024, 63, e202400105.
- 10H. Ma, X. Liu, A. H. Nobbs, A. Mishra, A. J. Patil, S. Mann, Adv. Mater. 2024, 36, 2404607.
- 11L. Guo, R. He, G. Chen, H. Yang, X. Kou, W. Huang, R. Gao, S. Huang, S. Huang, F. Zhu, G. Ouyang, J. Am. Chem. Soc. 2024, 146, 17189–17200.
- 12M. Li, S. Qiao, Y. Zheng, Y. H. Andaloussi, X. Li, Z. Zhang, A. Li, P. Cheng, S. Ma, Y. Chen, J. Am. Chem. Soc. 2020, 142, 6675–6681.
- 13M. Liu, L. Chen, Z. Zhao, M. Liu, T. Zhao, Y. Ma, Q. Zhou, Y. S. Ibrahim, A. A. Elzatahry, X. Li, D. Zhao, J. Am. Chem. Soc. 2022, 144, 3892–3901.
- 14Y. Zhang, C. Xing, Z. Mu, Z. Niu, X. Feng, Y. Zhang, B. Wang, J. Am. Chem. Soc. 2023, 145, 13469–13475.
- 15S. Dutta, N. Kumari, S. Dubbu, S. W. Jang, A. Kumar, H. Ohtsu, J. Kim, S. H. Cho, M. Kawano, I. S. Lee, Angew. Chem., Int. Ed. 2020, 59, 3416–3422.
- 16P. Li, J. A. Modica, A. J. Howarth, E. Vargas, L. Peyman, Z. MoghadamR. Q. Snurr, M. Mrksich, J. T. Hupp, O. K. Farha, Chem 2016, 1, 154–169.
- 17R. Gao, X. Kou, L. Tong, Z.-W. Li, Y. Shen, R. He, L. Guo, H. Wang, X. Ma, S. Huang, G. Chen, G. Ouyang, Angew. Chem., Int. Ed. 2024, 63, e202319876.
- 18J. Liang, J. Ruan, B. Njegic, A. Rawal, J. Scott, J. Xu, C. Boyer, K. Liang, Angew. Chem., Int. Ed. 2023, 62, e202303001.
- 19T. Man, C. Xu, X.-Y. Liu, D. Li, C.-K. Tsung, H. Pei, Y. Wan, L. Li, Nat. Commun. 2022, 13, 305.
- 20M. Feng, Z. Niu, C. Xing, Y. Jin, X. Feng, Y. Zhang, B. Wang, Angew. Chem., Int. Ed. 2023, 62, e202306621.
- 21D. Zheng, Y. Zheng, J. Tan, Z. Zhang, H. Huang, Y. Chen, Nat. Commun. 2024, 15, 5510.
- 22J.-S. Bae, E. Jeon, S.-Y. Moon, W. Oh, S.-Y. Han, J. H. Lee, S. Y. Yang, D.-M. Kim, J.-W. Park, Angew. Chem., Int. Ed. 2016, 55, 11495–11498.
- 23N. Moridi, P. F.-X. Corvini, P. Shahgaldian, Angew. Chem., Int. Ed. 2015, 54, 14800–14804.
- 24V. R. R. Marthala, M. Friedrich, Z. Zhou, M. Distaso, S. Reuss, S. A. Al-Thabaiti, W. Peukert, W. Schwieger, M. Hartmann, Adv. Funct. Mater. 2015, 25, 1832–1836.
- 25Y. Wang, H. Zhang, R. Fan, Y. Wan, M. Huang, S. Huang, L. Pan, J. Luo, Chem. Eng. Sci. 2024, 293, 120077.
- 26P. Jochems, Y. Satyawali, L. Diels, W. Dejonghe, Green Chem. 2011, 13, 1609.
- 27R. Mazzei, A. Yidego Gebreyohannes, T. Poerio, V. Sansone, V. Musteata, L. Upadhyaya, L. Bruno, R. Gorecki, S. P. Nunes, L. Giorno, J. Membr. Sci. 2024, 700, 122708.
- 28H. Zhang, J. Luo, J. M. Woodley, Y. Wan, Chem. Eng. J. 2021, 421, 127870.
- 29D. J. Bell, M. Wiese, A. A. Schönberger, M. Wessling, Angew. Chem., Int. Ed. 2020, 59, 16047–16053.
- 30Z. Guo, H. Jiang, H. Wu, L. Zhang, S. Song, Y. Chen, C. Zheng, Y. Ren, R. Zhao, Y. Li, Y. Yin, M. D. Guiver, Z. Jiang, Angew. Chem., Int. Ed. 2021, 60, 27078–27085.
- 31D. Rodríguez-San-Miguel, C. Montoro, F. Zamora, Chem. Soc. Rev. 2020, 49, 2291–2302.
- 32E. Vargo, L. Ma, H. Li, Q. Zhang, J. Kwon, K. M. Evans, X. Tang, V. L. Tovmasyan, J. Jan, A. C. Arias, H. Destaillats, I. Kuzmenko, J. Ilavsky, W.-R. Chen, W. Heller, R. O. Ritchie, Y. Liu, T. Xu, Nature 2023, 623, 724–731.
- 33L. Huang, W. Li, F. Wei, S. Ke, H. Chen, C. Jing, J. Cheng, S. Liu, Chem 2024, 10, 3100–3113.
- 34K. Koner, H. S. Sasmal, D. Shetty, R. Banerjee, Angew. Chem., Int. Ed. 2024, 63, e202406418.
- 35W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang, J. Jiang, J. Am. Chem. Soc. 2019, 141, 17431–17440.
- 36T. Huang, H. Jiang, J. C. Douglin, Y. Chen, S. Yin, J. Zhang, X. Deng, H. Wu, Y. Yin, D. R. Dekel, M. D. Guiver, Z. Jiang, Angew. Chem., Int. Ed. 2023, 62, e202209306.
- 37X. Wu, X. Han, Q. Xu, Y. Liu, C. Yuan, S. Yang, Y. Liu, J. Jiang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 7081–7089.
- 38Y. Liu, J. Ren, Y. Wang, X. Zhu, X. Guan, Z. Wang, Y. Zhou, L. Zhu, S. Qiu, S. Xiao, Q. Fang, CCS Chem 2023, 5, 2033–2045.
- 39Y.-J. Chen, M. Liu, J. Chen, X. Huang, Q.-H. Li, X.-L. Ye, G.-E. Wang, G. Xu, Chem. Sci. 2023, 14, 4824–4831.
- 40J.-H. Lee, H. Lee, J. Lee, T. W. Kang, J. H. Park, J.-H. Shin, H. Lee, D. Majhi, S. U. Lee, J.-H. Kim, ACS Nano 2023, 17, 17372–17382.
- 41E. Zhou, X. Zhang, L. Zhu, E. Chai, J. Chen, J. Li, D. Yuan, L. Kang, Q. Sun, Y. Wang, Sci. Adv. 2024, 10, eadk8564.
- 42W. Wei, S. Zhou, D.-D. Ma, Q. Li, M. Ran, X. Li, X.-T. Wu, Q.-L. Zhu, Adv. Funct. Mater. 2023, 33, 2302917.
- 43G. Yu, Y. Cui, S. Lin, R. Liu, S. Liu, Y. Zhu, D. Wu, Adv. Funct. Mater. 2024, 34, 2314935.
- 44Z. Guo, H. Wu, Y. Chen, S. Zhu, H. Jiang, S. Song, Y. Ren, Y. Wang, X. Liang, G. He, Y. Li, Z. Jiang, Angew. Chem., Int. Ed. 2022, 61, e202210466.
- 45H. Kim, Y. K. Choi, J. Lee, E. Lee, J. Park, M.-J. Kim, Angew. Chem., Int. Ed. 2011, 50, 10944–10948.
- 46L. Wang, A. C. Hortelão, X. Huang, S. Sánchez, Angew. Chem., Int. Ed. 2019, 58, 7992–7996.
- 47K. Li, J. Wang, Y. He, G. Cui, M. A. Abdulrazaq, Y. Yan, Chem. Eng. J. 2018, 351, 258–268.
- 48H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905–912.
- 49Q. Sun, Y. Tang, B. Aguila, S. Wang, F.-S. Xiao, P. K. Thallapally, A. M. Al-Enizi, A. Nafady, S. Ma, Angew. Chem., Int. Ed. 2019, 58, 8670–8675.
- 50Q. Sun, C.-W. Fu, B. Aguila, J. Perman, S. Wang, H.-Y. Huang, F.-S. Xiao, S. Ma, J. Am. Chem. Soc. 2018, 140, 984–992.
- 51Q. Sun, B. Aguila, P. C. Lan, S. Ma, Adv. Mater. 2019, 31, 1900008.
- 52H. Liu, Y. Zhou, J. Guo, R. Feng, G. Hu, J. Pang, Y. Chen, O. Terasaki, X.-H. Bu, J. Am. Chem. Soc. 2023, 145, 23227–23237.
- 53Y. Zheng, S. Zhang, J. Guo, R. Shi, J. Yu, K. Li, N. Li, Z. Zhang, Y. Chen, Angew. Chem., Int. Ed. 2022, 61, e202208744.
- 54A. Park, S. Park, ACS Catal. 2022, 12, 2397–2402.
- 55J. Wang, K. Li, Y. He, Y. Wang, J. Yan, L. Xu, X. Han, Y. Yan, ACS Appl. Mater. Interfaces 2020, 12, 4906–4916.
- 56Y. Feng, R. Shi, M. Yang, Y. Zheng, Z. Zhang, Y. Chen, Angew. Chem., Int. Ed. 2023, 62, e202302436.
- 57L. Zheng, Z. Zhang, Z. Lai, S. Yin, W. Xian, Q.-W. Meng, Z. Dai, Y. Xiong, X. Meng, S. Ma, F.-S. Xiao, Q. Sun, Nat. Commun. 2024, 15, 6837.
- 58X. Li, S. Pang, Y. Zhang, J. Fu, G. He, B. Song, D. Peng, X. Zhang, L. Jiang, Adv. Mater. 2024, 36, 2310954.
- 59C. Xing, P. Mei, Z. Mu, B. Li, X. Feng, Y. Zhang, B. Wang, Angew. Chem., Int. Ed. 2022, 61, e202201378.
- 60L. Hao, Q. Zhu, X. Qiao, Q. Shi, Y. Liu, T. Wang, E. Lin, C. Peng, Z. Zhang, Y. Chen, Angew. Chem., Int. Ed. 2024, 63, e202416550.
- 61P. P. Chiplunkar, X. Zhao, P. D. Tomke, J. Noro, B. Xu, Q. Wang, C. Silva, A. P. Pratap, A. Cavaco-Paulo, Ultrason. Sonochem. 2018, 40, 587–593.