Breaking Symmetry of Active Sites in Metal-Organic Frameworks for Efficient Photocatalytic Valorization of Polyester Plastics
Dr. Jibo Qin
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJianchi Zhou
Institute of Micro and Nano Materials, Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Jin Ma
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorShuang Li
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Search for more papers by this authorDr. Awu Zhou
Beijing Key Lab for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorDr. Linhua Xie
Beijing Key Lab for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yibo Dou
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Institute of Micro and Nano Materials, Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Yuanjian Zhang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDr. Jibo Qin
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJianchi Zhou
Institute of Micro and Nano Materials, Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Jin Ma
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorShuang Li
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Search for more papers by this authorDr. Awu Zhou
Beijing Key Lab for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorDr. Linhua Xie
Beijing Key Lab for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yibo Dou
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 P.R. China
Institute of Micro and Nano Materials, Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Yuanjian Zhang
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A feasible asymmetric ligand substitution strategy is developed to break symmetric sites on metal-organic frameworks (MOFs). The obtained defective MIL-101 (D-MIL-101) as a nanozyme featured with asymmetric Fe3-δ/Fe3+ sites exhibits high performance for photocatalytic depolymerization of polyester plastics.
Abstract
Chemical upcycling of waste plastics offers a promising way toward achieving a circular economy and alleviating environmental pollution but remains a huge challenge. Inspired by hydrolase enzymes and aiming to overcome their intrinsic limitations, we put forward a design principle for an innovative nanozyme featuring asymmetric metal sites. This nanozyme functions as photocatalyst, enabling sustainable valorization of polyester plastics. As a proof of concept, an asymmetric ligand substitution strategy is developed to construct metal-organic frameworks (MOFs) that are defective MIL-101(Fe) (D-MIL-101) with asymmetric Fe3-δ/Fe3+ (0< δ <1) sites. The differential electronic configurations inherent to adjacent Fe3-δ/Fe3+ sites endow a high photocatalytic activity for the valorization of polyester plastic. Accordingly, the ester bonds of polyesters can be preferentially cleaved, contributing to the low energy barrier of upcycling plastics. As a result, the D-MIL-101 achieves a high monomer yield with terephthalic acid (TPA) of ∼93.9% and ethylene glycol (EG) of ∼87.1% for photocatalytic valorization of poly (ethylene terephthalate) (PET), beyond the efficiency of natural enzymes and state-of-the-art photocatalysts. In addition, such a D-MIL-101 is demonstrated to be feasible for the valorization of various real-world polyester plastic wastes in a flow photocatalysis system.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505786-sup-0001-suppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cheng, J. Chen, B. Deng, W. Chen, K. J. Silva, L. Eddy, G. Wu, Y. Chen, B. Li, C. Kittrell, S. Xu, T. Si, A. A. Martí, B. I. Yakobson, Y. Zhao, J. M. Tour, Nat. Sustain. 2024, 7, 452–462.
- 2J. W. Cottom, E. Cook, C. A. Velis, Nature 2024, 633, 101–108.
- 3H. S. Wang, M. Agrachev, H. Kim, N. P. Truong, T. L. Choi, G. Jeschke, A. Anastasaki, Science 2025, 387, 874–880.
- 4C. He, C. Liu, S. Pan, Y. Tan, J. Guan, H. Xu, J. Feng, J. Duan, C. Te Hung, Z. Zhang, K. Li, Y. Ai, C. Yang, Y. Zhao, Z. Yu, Y. Zhang, L. Wang, D. Zhao, W. Li, Angew. Chemie Int. Ed. 2024, 136, e202317558.
- 5Q. Dong, A. D. Lele, X. Zhao, S. Li, S. Cheng, Y. Wang, M. Cui, M. Guo, A. H. Brozena, Y. Lin, T. Li, L. Xu, A. Qi, I. G. Kevrekidis, J. Mei, X. Pan, D. Liu, Y. Ju, L. Hu, Nature 2023, 616, 488–494.
- 6H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. R. Alexander, H. O. Cole, Y. Zhang, N. A. Lynd, A. D. Ellington, H. S. Alper, Nature 2022, 604, 662–667.
- 7B. von Vacano, H. Mangold, G. W. M. Vandermeulen, G. Battagliarin, M. Hofmann, J. Bean, A. Künkel, Angew. Chemie Int. Ed. 2023, 62, e202210823.
- 8G. W. Coates, Y. D. Y. L. Getzler, Nat. Rev. Mater. 2020, 5, 501–516.
- 9M. Wang, Y. Gao, S. Yuan, J. Deng, J. Yang, J. Yan, S. Yu, B. Xu, D. Ma, Nat. Chem. Eng. 2024, 1, 376–384.
10.1038/s44286-024-00064-y Google Scholar
- 10W. Zeng, Y. Zhao, F. Zhang, R. Li, M. Tang, X. Chang, Y. Wang, F. Wu, B. Han, Z. Liu, Nat. Commun. 2024, 15, 160.
- 11L. Zeng, T. Yan, J. Du, C. Liu, B. Dong, B. Qian, Z. Xiao, G. Su, T. Zhou, Z. Peng, Z. Wang, H. Li, J. Zeng, Angew. Chemie Int. Ed. 2024, 63, e202404952.
- 12S. Yang, Y. Li, M. Nie, X. Liu, Q. Wang, N. Chen, C. Zhang, Adv. Mater. 2024, 36, 2404115.
- 13K. Liu, X. Gao, C. X. Liu, R. Shi, E. C. M. Tse, F. Liu, Y. Chen, Adv. Energy Mater. 2024, 14, 2304065.
- 14J. Qin, Y. Dou, J. Zhou, D. Zhao, T. Orlander, H. R. Andersen, C. Hélix-Nielsen, W. Zhang, Appl. Catal. B Environ. 2024, 341, 123355.
- 15S. Chu, B. Zhang, X. Zhao, H. Sen Soo, F. Wang, R. Xiao, H. Zhang, Adv. Energy Mater. 2022, 12, 2200435.
- 16T. Uekert, H. Kasap, E. Reisner, J. Am. Chem. Soc. 2019, 141, 15201–15210.
- 17T. Uekert, M. F. Kuehnel, D. W. Wakerley, E. Reisner, Energy Environ. Sci. 2018, 11, 2853–2857.
- 18X. Jiao, K. Zheng, Q. Chen, X. Li, Y. Li, W. Shao, J. Xu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Angew. Chemie Int. Ed. 2020, 59, 15497–15501.
- 19J. Qin, Y. Dou, J. Zhou, V. M. Candelario, H. R. Andersen, C. Hélix-Nielsen, W. Zhang, Adv. Funct. Mater. 2023, 33, 123355.
- 20N. A. Tarazona, R. Wei, S. Brott, L. Pfaff, U. T. Bornscheuer, A. Lendlein, R. Machatschek, Chem. Catal. 2022, 2, 3573–3589.
- 21C. DelRe, B. Chang, I. Jayapurna, A. Hall, A. Wang, K. Zolkin, T. Xu, Adv. Mater. 2021, 33, 2105707.
- 22B. Zhu, Q. Ye, Y. Seo, N. Wei, Environ. Sci. Technol. Lett. 2022, 9, 650–657.
- 23C. C. Chen, X. Han, X. Li, P. Jiang, D. Niu, L. Ma, W. Liu, S. Li, Y. Qu, H. Hu, J. Min, Y. Yang, L. Zhang, W. Zeng, J. W. Huang, L. Dai, R. T. Guo, Nat. Catal. 2021, 4, 425–430.
- 24R. Zhang, X. Yan, K. Fan, Accounts Mater. Res. 2021, 2, 534–547.
- 25M. Li, S. Zhang, ACS Catal. 2024, 14, 2949–2958.
- 26G. Schenk, N. Mitić, L. R. Gahan, D. L. Ollis, R. P. McGeary, L. W. Guddat, Acc. Chem. Res. 2012, 45, 1593.
- 27B. C. Knott, E. Erickson, M. D. Allen, J. E. Gado, R. Graham, F. L. Kearns, I. Pardo, E. Topuzlu, J. J. Anderson, H. P. Austin, G. Dominick, C. W. Johnson, N. A. Rorrer, C. J. Szostkiewicz, V. Copié, C. M. Payne, H. L. Woodcock, B. S. Donohoe, G. T. Beckham, J. E. McGeehan, Proc. Natl. Acad. Sci. USA 2020, 117, 25476–25485.
- 28S. Joo, I. J. Cho, H. Seo, H. F. Son, H. Y. Sagong, T. J. Shin, S. Y. Choi, S. Y. Lee, K. J. Kim, Nat. Commun. 2018, 9, 382.
- 29X. Han, W. Liu, J. W. Huang, J. Ma, Y. Zheng, T. P. Ko, L. Xu, Y. S. Cheng, C. C. Chen, R. T. Guo, Nat. Commun. 2017, 8, 2106.
- 30J. Wei, Q. Wang, M. He, S. Li, Y. Zhang, Y. Yang, S. Luo, L. Fu, X. Wang, T. Yang, Appl. Surf. Sci. 2023, 612, 155726.
- 31H. Feng, Q. Xu, T. Lv, H. Liu, Appl. Catal. B Environ. 2024, 351, 123949.
- 32Y. Mao, Y. Jiang, Q. Gou, S. Lv, Z. Song, Y. Jiang, W. Wang, M. Li, L. Zheng, W. Su, R. He, Appl. Catal. B Environ. 2024, 340, 123189.
- 33H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525–10532.
- 34G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, Chem. Mater. 2016, 28, 3749–3761.
- 35J. Zhou, J. Qin, B. Li, C. Luo, J. Han, Y. Hu, W. Zhang, Y. Dou, AIChE J. 2024, 70, e18513.
- 36M. Han, S. Zhu, C. Xia, B. Yang, Appl. Catal. B Environ. 2022, 316, 121662.
- 37S. Kamal, K. Carew, J. Qin, D. Hatinoglu, O. Apul, B. Xiong, ACS Sustainable Chem. Eng. 2025, 13, 2401–2410.
- 38A. M. de Castro, A. Carniel, D. Stahelin, L. S. Chinelatto Junior, H. A. de Honorato, S. M. C. de Menezes, Process Biochem. 2019, 81, 85–91.
- 39S. Zhang, Q. Hu, Y. X. Zhang, H. Guo, Y. Wu, M. Sun, X. Zhu, J. Zhang, S. Gong, P. Liu, Z. Niu, Nat. Sustain. 2023, 6, 965–973.
- 40S. Guo, Y. Huang, D. Li, Z. Xie, Y. Jia, X. Wu, D. Xu, W. Shi, Chem. Commun. 2023, 59, 7791–7794.
- 41X. Liang, T. Gao, Y. Cui, Q. Dong, X. Li, A. Labidi, E. Lichtfouse, F. Li, F. Yu, C. Wang, Appl. Catal. B Environ. 2024, 357, 124326.
- 42R. J. Müller, H. Schrader, J. Profe, K. Dresler, W. D. Deckwer, Macromol. Rapid Commun. 2005, 26, 1400–1405.
- 43J. Then, R. Wei, T. Oeser, M. Barth, M. R. Belisário-Ferrari, J. Schmidt, W. Zimmermann, Biotechnol. J. 2015, 10, 592–598.
- 44R. Wei, D. Breite, C. Song, D. Gräsing, T. Ploss, P. Hille, R. Schwerdtfeger, J. Matysik, A. Schulze, W. Zimmermann, Adv. Sci. 2019, 6, 1900491.
- 45F. Kawai, M. Oda, T. Tamashiro, T. Waku, N. Tanaka, M. Yamamoto, H. Mizushima, T. Miyakawa, M. Tanokura, Appl. Microbiol. Biotechnol. 2014, 98, 10053–10064.
- 46P. Blázquez-sánchez, F. Engelberger, J. Cifuentes-anticevic, C. Sonnendecker, A. Griñén, Appl. Environ. Microbiol. 2022, 88, e01842.
- 47D. Danso, J. Chow, W. Zimmermann, R. Wei, Appl. Environ. Microbiol. 2018, 84, e02773.
- 48C. Luo, Z. Li, Y. Deng, L. Wang, E. Xu, J. Zhou, X. Zhang, J. Li, X. Hu, B. Wang, Y. Dou, Y. Yang, M. Wei, Appl. Catal. B Environ. 2024, 355, 124156.
- 49F. Wu, Y. Dou, J. Zhou, J. Qin, T. Jiang, Y. Yao, C. Hélix-Nielsen, W. Zhang, Chem. Eng. J. 2023, 470, 144134.