Air-Level Oxygen Enables 100% Selectivity in Urea Synthesis via Photocatalytic C─N Coupling of CO and Ammonia
Xingmiao Huang
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Shijie Xie
State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Bo Sheng
National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003 China
Search for more papers by this authorBowen Xiao
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Chuncheng Chen
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Hua Sheng
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
E-mail: [email protected]
Search for more papers by this authorProf. Jincai Zhao
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorXingmiao Huang
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Shijie Xie
State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Bo Sheng
National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003 China
Search for more papers by this authorBowen Xiao
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Chuncheng Chen
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Hua Sheng
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
E-mail: [email protected]
Search for more papers by this authorProf. Jincai Zhao
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorGraphical Abstract
The photocatalytic coupling reaction of carbon monoxide and ammonia pays a new pathway for urea synthesis under mild conditions. Herein, we proposed a universal O2-mediated urea generation pathway via the O2•– radicals act as the dominant active species to drive the mild NH3 oxidation to •NH2 radicals, which then coupled with CO as the crucial step for urea production.
Abstract
The clean-energy-driven synthesis of urea from carbon- and nitrogen-containing small molecules has garnered significant interest but remained great challenges to achieve with high selectivity. Herein, we present a photocatalytic pathway for the selective urea synthesis through the oxidative coupling between CO and NH3. The key factor in this process is the atmospheric O2 level, which plays a crucial role in controlling both the urea production rate and its selectivity. Using oxygen-deficient TiO2 under an air-level (20%) O2 atmosphere, we achieved a urea generation rate of 54.31 mg gcat−1 h−1 with 100% selectivity. This rate is 38.52 times higher than under oxygen-free conditions, while further increasing the O2 level significantly reduces selectivity. Mechanistic studies reveal that the process begins with the oxidation of NH3 to •NH2 through oxidative radicals generated on TiO2, especially the oxygen-derived O2•–. This •NH2 radicals then couple with CO to form urea. The concentration of radicals is controlled by the O2 level, with the optimal concentration under air-level O2 enabling efficient NH3 oxidation to •NH2 while preventing over-oxidation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202505630-sup-0001-SuppMat.pdf9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636–639.
- 2R. Ronchetti, G. Moroni, A. Carotti, A. Gioiello, E. Camaioni, RSC Med. Chem. 2021, 12, 1046–1064.
- 3V. Nagaraju, C. Jange, C. Wassgren, K. Ambrose, J. Environ. Chem. Eng. 2024, 12, 114308.
- 4J. Meessen, Chem. Ing. Tech. 2014, 86, 2180–2189.
- 5F. Barzagli, F. Mani, M. Peruzzini, Green Chem. 2011, 13, 1267.
- 6X. Huang, Y. Li, S. Xie, Q. Zhao, B. Zhang, Z. Zhang, H. Sheng, J. Zhao, Angew. Chem. Int. Ed. 2024, 63, e202403980.
- 7Y. Gao, J. Wang, M. Sun, Y. Jing, L. Chen, Z. Liang, Y. Yang, C. Zhang, J. Yao, X. Wang, Angew. Chem. Int. Ed. 2024, 63, e202402215.
- 8D. Li, Y. Zhao, Y. Miao, C. Zhou, L. P. Zhang, L. Z. Wu, T. Zhang, Adv. Mater. 2022, 34, e2207793.
- 9Z. Tao, C. L. Rooney, Y. Liang, H. Wang, J. Am. Chem. Soc. 2021, 143, 19630–19642.
- 10H. Song, D. A. Chipoco Haro, P. Huang, L. Barrera, M. C. Hatzell, Acc. Chem. Res. 2023, 56, 2944–2953.
- 11H. Sun, Z. Lin, R. Tang, Y. Liang, S. Zou, X. Zhang, K. Chen, R. Zheng, J. Huang, Appl. Catal. B-Environ 2025, 360, 124511.
- 12Y. Xu, J. P. Edwards, J. Zhong, C. P. O'Brien, C. M. Gabardo, C. McCallum, J. Li, C.-T. Dinh, E. H. Sargent, D. Sinton, Energy Environ. Sci. 2020, 13, 554–561.
- 13H. J. Zhu, D. H. Si, H. Guo, Z. Chen, R. Cao, Y. B. Huang, Nat. Commun. 2024, 15, 1479.
- 14H. Guo, D. H. Si, H. J. Zhu, Z. A. Chen, R. Cao, Y. B. Huang, Angew. Chem. Int. Ed. 2024, 63,e202319472.
- 15Y. Jiang, S. Li, S. Wang, Y. Zhang, C. Long, J. Xie, X. Fan, W. Zhao, P. Xu, Y. Fan, C. Cui, Z. Tang, J. Am. Chem. Soc. 2023, 145, 2698–2707.
- 16B. Sheng, C. Deng, Y. Li, S. Xie, Z. Wang, H. Sheng, J. Zhao, ACS Catal. 2022, 12, 14679–14688.
- 17C. Xian, J. He, Y. He, J. Nie, Z. Yuan, J. Sun, W. N. Martens, J. Qin, H.-Y. Zhu, Z. Zhang, J. Am. Chem. Soc. 2022, 144, 23321–23331.
- 18J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, Z. Chen, J. Am. Chem. Soc. 2022, 144, 9661–9671.
- 19H. Liu, Y. Chen, H. Li, G. Wan, Y. Feng, W. Wang, C. Xiao, G. Zhang, Y. Xie, Angew. Chem. Int. Ed. 2023, 62, e202304562.
- 20K. Dang, L. Wu, S. Liu, H. Ji, C. Chen, Y. Zhang, J. Zhao, Energy Environ. Sci. 2024, 17, 4681–4691.
- 21L. Wu, Q. Li, K. Dang, D. Tang, C. Chen, Y. Zhang, J. Zhao, Angew. Chem. Int. Ed. 2024, 63, e202316218.
- 22J. Wang, X. Li, S. Shen, R. Chen, Q. Ren, J. Li, F. Dong, ACS Catal. 2023, 13, 8783–8791.
- 23S. Zhang, R. Wang, K. Wang, M. Wang, Z. He, H. Chen, S.-H. Ho, Environ. Sci. Technol. 2024, 58, 1921–1933.
- 24H. Zhou, D. Zhang, H. Xie, Y. Liu, C. Meng, P. Zhang, F. Fan, R. Li, C. Li, Adv. Mater. 2023, 35, 202300914.
- 25S. Xue, C. S. Wei, Min, X. W. L., Jiali, C. Y., W. W. Xing, Sibo, W. L., Z. Yu, Y. Hou, J. C. Yu, X. Wang, Proc. Nat. Acad. Sci 2024, 121, e2319751121.
- 26D. Liu, C. Zhang, Y. Yu, Y. Shi, Y. Yu, Z. Niu, B. Zhang, Nano Res. 2018, 11, 603–613.
- 27D. Liu, C. Wang, Y. Yu, B.-H. Zhao, W. Wang, Y. Du, B. Zhang, Chem 2019, 5, 376–389.
- 28S. Zhou, L. Jiang, H. Wang, J. Yang, X. Yuan, H. Wang, J. Liang, X. Li, H. Li, Y. Bu, Adv. Funct. Mater. 2023, 33, 202307702.
- 29S. Zhong, D. Yu, Y. Ma, Y. Lin, X. Wang, Z. Yu, M. Huang, Y. Hou, M. Anpo, J. C. Yu, J. Zhang, X. Wang, Angew. Chem. Int. Ed. 2025, 64, e202502823.
- 30F. Huang, X. Chen, H. Sun, Q. Zeng, J. Ma, D. Wei, J. Zhu, Z. Chen, T. Liang, X. Yin, X. Liu, J. Xu, H. He, Angew. Chem. Int. Ed. 2024, 64, e202415642.
- 31S. Xie, Y. Li, B. Sheng, W. Zhang, W. Wang, C. Chen, J. Li, H. Sheng, J. Zhao, Appl. Catal. B-Environ 2022, 310, 121320.
- 32M. Zhang, Y. Mao, X. Bao, P. Wang, Y. Liu, Z. Zheng, H. Cheng, Y. Dai, Z. Wang, B. Huang, ACS Catal. 2024, 14, 5275–5285.
- 33X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X.-Z. Fu, S. Wang, J. Am. Chem. Soc. 2022, 144, 11530–11535.
- 34H. Sheng, H. Ji, W. Ma, C. Chen, J. Zhao, Angew. Chem. Int. Ed. 2013, 52, 9686–9690.
- 35H. H. Sun, Z. B. Zhou, Y. Fu, Q. Y. Qi, Z. X. Wang, S. Xu, X. Zhao, Angew. Chem. Int. Ed. 2024, 63, e202409250.
- 36J. He, Z. Li, P. Feng, G. Lu, T. Ding, L. Chen, X. Duan, M. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202410381.
- 37W. Yang, L. Xiao, H. Wu, X. Li, Q. Ren, J. Li, Y. Zhou, F. Dong, Angew. Chem. Int. Ed. 2024, 63, e202408379.
- 38X. Song, C. Basheer, Y. Xia, R. N. Zare, Environ. Sci. Technol. 2024, 58, 16196–16203.
- 39H. Xiong, P. Yu, K. Chen, S. Lu, Q. Hu, T. Cheng, B. Xu, Q. Lu, Nat. Catal. 2024, 7, 785–795.
- 40Y. Zhang, M. Zhang, Y. Zang, H. Wang, C. Liu, L. Wei, Y. Wang, L. He, W. Wang, Z. Zhang, R. Han, N. Ji, C. Song, X. Lu, D. Ma, Y. Sun, Q. Liu, ACS Catal. 2023, 13, 1449–1461.
- 41E. K. Dann, E. K. Gibson, R. H. Blackmore, C. R. A. Catlow, P. Collier, A. Chutia, T. E. Erden, C. Hardacre, A. Kroner, M. Nachtegaal, A. Raj, S. M. Rogers, S. F. R. Taylor, P. Thompson, G. F. Tierney, C. D. Zeinalipour-Yazdi, A. Goguet, P. P. Wells, Nat. Catal. 2019, 2, 157–163.
- 42X. Wei, Y. Liu, X. Zhu, S. Bo, L. Xiao, C. Chen, T. T. T. Nga, Y. He, M. Qiu, C. Xie, D. Wang, Q. Liu, F. Dong, C.-L. Dong, X.-Z. Fu, S. Wang, Adv. Mater. 2023, 35, e2300020.
- 43Y. Luo, K. Xie, P. Ou, C. Lavallais, T. Peng, Z. Chen, Z. Zhang, N. Wang, X. Y. Li, I. Grigioni, B. Liu, D. Sinton, J. B. Dunn, E. H. Sargent, Nat. Catal. 2023, 6, 939–948.
- 44Z. Luo, Y. Yan, R. Spinney, D. D. Dionysiou, F. A. Villamena, R. Xiao, D. Vione, Water Res. 2024, 261, 122023.
- 45M. Fei, B. Williams, L. Wang, H. Li, Y. Yuan, J. R. Wilkes, T. Liu, Y. Mu, J. Huang, J. Nyakuchena, J. Huang, W. Li, D. Wang, ACS Catal. 2024, 14, 1855–1861.
- 46N. Lu, X. Yan, B. Wu, H. Kobayashi, R. Li, Appl. Catal. B-Environ 2025, 360, 124536.
- 47Y. Tian, Y. Wu, H. Liang, B. Zhao, Y. Jin, J. Liu, Z. Li, Appl. Surf. Sci. 2022, 602, 154329.
- 48S. Yang, W. Zhang, G. Pan, J. Chen, J. Deng, K. Chen, X. Xie, D. Han, M. Dai, L. Niu, Angew. Chem. Int. Ed. 2023, 62, e202312076.
- 49H. Maimaiti, B. Xu, J. Sun, L. Feng, ACS Sustainable Chem. Eng. 2021, 9, 6991–7002.
- 50S. Yang, J. Deng, J. Chen, Q. Tan, T. Liu, K. Chen, D. Han, Y. Ma, M. Dai, L. Niu, Catal. Sci. Technol. 2023, 13, 1855–1865.
- 51Y. Wang, S. Wang, J. Gan, J. Shen, Z. Zhang, H. Zheng, X. Wang, ACS Sustainable Chem. Eng. 2023, 11, 1962–1973.
- 52H. Liang, X. Song, Y. Zhang, Y. Wu, B. Zhao, Y. Liu, Y. Jin, L. Sheng, M. Zhao, J. Liu, Z. Li, J. Alloys Compd. 2023, 934, 167884.
- 53C. Shi, K. Xia, L. Zhang, M. Guo, X. Guan, C. Gu, X. Yang, Y. Wang, X. Liu, X. Ding, Adv. Energy Mater. 2024, 14, 2400201.
- 54M. Xia, C. Mao, A. Gu, A. A. Tountas, C. Qiu, T. E. Wood, Y. F. Li, U. Ulmer, Y. Xu, C. J. Viasus, J. Ye, C. Qian, G. Ozin, Angew. Chem. Int. Ed. 2022, 61, e202110158.
- 55B. Srinivas, V. D. Kumari, G. Sadanandam, C. Hymavathi, M. Subrahmanyam, B. R. De, Photochem. Photobiol. 2012, 88, 233–241.
- 56W. Yang, L. Xiao, W. Dai, S. Mou, F. Dong, Adv. Energy Mater. 2024, 14, 2303806.
- 57M. I. Ahmad, Y. Liu, Y. Wang, P. Cao, H. Yu, H. Li, S. Chen, X. Quan, Angew. Chem. Int. Ed. 2025, 64, e202419628.
- 58M. Fang, X. Miao, Z. Huang, M. Wang, X. Feng, Z. Wang, Y. Zhu, L. Dai, L. Jiang, J. Am. Chem. Soc. 2024, 146, 27060–27069.
- 59X. Zhu, S. R. Castleberry, M. A. Nanny, E. Butller, Environ. Sci. Technol. 2005, 39, 3784–3791.
- 60C. Wu, K. Song, X. Zhang, B. Tan, R. Liao, Z. Q. Liu, H. Zhu, J. Wang, Angew. Chem. Int. Ed. 2025, 64, e202423200.
- 61Z. Zhang, Y. Wang, Y. Xie, T. Tsukamoto, Q. Zhao, Q. Huang, X. Huang, B. Zhang, W. Song, C. Chen, H. Sheng, J. Zhao, Nat. Commun. 2025, 16, 274.