π-Bridge-Linked Ionic Covalent Organic Framework with Fast Reaction Kinetics for High-Rate-Capacity Lithium-Ion Batteries
Ju Duan
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Both authors contributed equally to this work.
Search for more papers by this authorFeng Chen
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Both authors contributed equally to this work.
Search for more papers by this authorHuajie Yu
State Key Laboratory of Advanced Fiber Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorShenbo Zhu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorLikuan Teng
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorKexiang Wang
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorTiejun Chen
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Prof. Wei Lyu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Huawei Hu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Yaozu Liao
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJu Duan
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Both authors contributed equally to this work.
Search for more papers by this authorFeng Chen
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Both authors contributed equally to this work.
Search for more papers by this authorHuajie Yu
State Key Laboratory of Advanced Fiber Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorShenbo Zhu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorLikuan Teng
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorKexiang Wang
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorTiejun Chen
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Prof. Wei Lyu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Huawei Hu
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Yaozu Liao
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A new ionic quinoline-linked COF (iQCOF) was synthesized by combining π-bridge and charge-introduction strategy via a one-pot Povarov reaction. The π-bridge-linked ionic liquid endow iQCOF enhanced charge transfer ability, fast ionic atmosphere dissociation rate, and higher reaction rate. Thereby, it can be regarded as advanced COF-based cathodes with rapid kinetics to achieve high-rate performance and long-term stability.
Abstract
Covalent organic frameworks (COFs) have emerged as promising cathode materials for high-performance lithium-ion batteries (LIBs) due to their well-defined topologies and tunable pore architectures. However, their practical application is often limited by intrinsically sluggish charge transfer and inferior reaction kinetics. To address these challenges, we develop an ionic quinoline-linked COF (iQCOF) cathode via a one-pot Povarov reaction with triazole ionic liquid. The iQCOF architecture achieves a synergistic enhancement by integrating π-bridge-induced charge delocalization to facilitate charge transport, the specific adsorption effect to gain fast ionic atmosphere dissociation rate, and polar triazine units to enable uniform ion flux for stable interfaces. As a result, iQCOF delivers a high specific capacity of 407 mAh g−1 with 701 Wh kg−1, and exceptional rate capability (121 mAh g−1 at 10 A g−1) with 0.0027% per cycle over 10 000 cycles, further highlighting its potential as a high-performance organic cathode. This work provides a convenient strategy for advanced COF-based cathodes with fast reaction kinetics to achieve high-rate performance, paving the way for next-generation energy storage technologies.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505207-sup-0001-SuppMat.docx15 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chen, G. Wu, H. Jiang, J. Wang, T. Chen, C. Han, W. Wang, R. Yang, J. Zhao, Z. Tang, X. Gong, C. Li, M. Zhu, K. Zhang, Y. Xu, Y. Wang, Z. Hu, P. Chen, S. Chen, G. Wu, H. Jiang, J. Wang, T. Chen, C. Han, W. Wang, R. Yang, J. Zhao, Z. Tang, X. Gong, C. Li, M. Zhu, K. Zhang, Y. Xu, Y. Wang, Z. Hu, P. Chen, B. Wang, K. Zhang, Y. Xia, H. Peng, Y. Gao, Nature 2025, 638, 676–683.
- 2R. Pandya, L. Valzania, F. Dorchies, F. Xia, J. M. Hugh, A. Mathieson, H. J. Tan, T. G. Parton, L. Godeffroy, K. Mazloomian, T. S. Miller, F. Kanoufi, M. D. Volder, J.-M. Tarascon, S. Gigan, H. B. d. Aguiar, A. Grimaud, Nat. Nanotechnol. 2023, 18, 1185–1194.
- 3Y. Ye, R. Xu, W. Huang, H. Ai, W. Zhang, J. O. Affeld, A. Cui, F. Liu, X. Gao, Z. Chen, T. Li, X. Xiao, Z. Zhang, Y. Peng, R. A. Vila, Y. Wu, S. T. Oyakhire, H. Kuwajima, Y. Suzuki, R. Matsumoto, Y. Masuda, T. Yuuki, Y. Nakayama, Y. Cui, Nat. Energy 2024, 9, 643–653.
- 4X. Huang, Nature 2025, 637, 29–30.
- 5G. Wan, T. P. Pollard, L. Ma, M. A. Schroeder, C.-C. Chen, Z. Zhu, Z. Zhang, C.-J. Sun, J. Cai, H. L. Thaman, A. Vailionis, H. Li, S. Kelly, Z. Feng, J. Franklin, S. P. Harvey, Y. Zhang, Y. Du, Z. Chen, C. J. Tassone, H.-G. Steinrück, K. Xu, O. Borodin, M. F. Toney, Science 2024, 385, 1230–1236.
- 6Y. Zuo, J. Liu, H. Wang, Y. Zou, T. Luo, K. Zhang, Y. Yang, C. Gao, B. Li, Q. Sun, D. Xia, Adv. Mater. 2025, 37, 2412920.
- 7Q. Bai, J. Huang, K. Tang, Y. Zhu, D. Wu, Adv. Mater. 2025, 37, 2416661.
- 8M. E. Baumert, V. Le, P.-H. Su, Y. Akae, D. Bresser, P. Théato, M. M. Hansmann, J. Am. Chem. Soc. 2023, 145, 23334–23345.
- 9M. Yin, K. Guo, J. Meng, Y. Wang, H. Gao, Z. Xue, Adv. Mater. 2024, 36, 2405747.
- 10W. Li, Q. Huang, H. Shi, W. Gong, L. Zeng, H. Wang, Y. Kuai, Z. Chen, H. Fu, Y. Dong, C. Zhang, Adv. Funct. Mater. 2024, 34, 2310668.
- 11W. Li, H. Xu, H. Zhang, F. Wei, L. Huang, S. Ke, J. Fu, C. Jing, J. Cheng, S. Liu, Nat. Commun. 2023, 14, 5235.
- 12G. Zhan, B. Koek, Y. Yuan, Y. Liu, V. Mishra, V. Lenzi, K. Strutyński, C. Li, R. Zhang, X. Zhou, H. S. Choi, Z.-F. Cai, J. Almarza, K. S. Mali, A. Mateo-Alonso, M. M. Franco, Y. Zhu, S. D. Feyter, K. P. Loh, Nat. Chem. 2025, 17, 518–524.
- 13N. Fu, Y. Liu, K. Kang, X. Tang, S. Zhang, Z. Yang, Y. Wang, P. Jin, Y. Niu, B. Yang, Angew. Chem. Int. Ed. 2024, 63, e202412334.
- 14C. Li, A. Yu, W. Zhao, G. Long, Q. Zhang, S. Mei, C.-J. Yao, Angew. Chem. Int. Ed. 2024, 63, e202409421.
- 15M. Yu, B. Wang, H. Ma, S. Kamchompoo, B. Zhao, S. Jungsuttiwong, P. Maitarad, S. Yuan, L. Shi, Y. Fang, D. Zhao, Y. Lv, Nano Lett. 2024, 24, 8902–8910.
- 16R.-C. Chen, C.-M. Wu, L.-H. Chung, J. Hu, M.-C. Tang, Z. Lin, X. Yang, Z. Xu, J. He, Chem. Mater. 2024, 36, 9928–9938.
- 17C. Qian, L. Feng, W. L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 2022, 6, 881–898.
- 18S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258–4261.
- 19Y. Cao, M. Wang, H. Wang, C. Han, F. Pan, J. Sun, Adv. Energy Mater. 2022, 12, 2200057.
- 20P.-Y. You, K.-M. Mo, Y.-M. Wang, Q. Gao, X.-C. Lin, J.-T. Lin, M. Xie, R.-J. Wei, G.-H. Ning, D. Li, Nat. Commun. 2024, 15, 194.
- 21J. Liu, C. Tuo, W.-Y. Xiao, M.-Y. Qi, Y. Yusran, Z. Wang, H. Li, C. Guo, J. Song, S. Qiu, Y.-J. Xu, Q. Fang, Angew. Chem. Int. Ed. 2025, 64, e202416240.
- 22M. Fu, Y. Chen, W. Jin, H. Dai, G. Zhang, K. Fan, Y. Gao, L. Guan, J. Chen, C. Zhang, J. Ma, C. Wang, Angew. Chem. Int. Ed. 2024, 63, e202317393.
- 23D. Yan, L. Song, F. Kang, X. Mo, Y. Lv, J. Sun, H. Tang, X. Zhou, Q. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202422851.
- 24Q. Xu, Z. Liu, Y. Jin, X. Yang, T. Sun, T. Zheng, N. Li, Y. Wang, T. Li, K. Wang, J. Jiang, Energy Environ. Sci. 2024, 17, 5451–5460.
- 25L. Guo, L. Gong, Y. Yang, Z. Huang, X. Liu, F. Luo, Angew. Chem. Int. Ed. 2024, 64, e202414658.
- 26S. Ma, Z. Li, Y. Hou, J. Li, Z. Zhang, T. Deng, G. Wu, R. Wang, S.-w. Yang, X. Liu, Angew. Chem. Int. Ed. 2025, 64, e202501869.
- 27R. Chen, Q. Wu, J. Zhu, S. Wang, Z. Hu, J. Hu, J. Zhu, H. Zhang, B. Ye, Y. Sun, Y. Xie, J. Am. Chem. Soc. 2025, 147, 7921–7931.
- 28J. Hu, M. Lei, C. Zhu, B. Zhang, C. Li, Adv. Funct. Mater. 2024, 34, 2314044.
- 29C. Qin, X. Wu, L. Tang, X. Chen, M. Li, Y. Mou, B. Su, S. Wang, C. Feng, J. Liu, X. Yuan, Y. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238.
- 30J. Duan, K. Wang, L. Teng, H. Liu, L. Xu, Q. Huang, Y. Li, M. Liu, H. Hu, X. Chen, J. Wang, W. Yan, W. Lyu, Y. Liao, ACS Nano 2024, 18, 29189–29202.
- 31T. Zhang, S. Chen, P. S. Petkov, P. Zhang, H. Qi, N. N. Nguyen, W. Zhang, J. Yoon, P. Li, T. Brumme, A. Alfonsov, Z. Liao, M. Hambsch, S. Xu, L. Mester, V. Kataev, B. Büchner, S. C. B. Mannsfeld, E. Zschech, S. S. P. Parkin, U. Kaiser, T. Heine, R. Dong, R. Hillenbrand, X. Feng, Nature 2025, 638, 411–417.
- 32S.-h. Liu, H. Wang, J.-k. Sun, M. Antonietti, J. Yuan, Acc. Chem. Res. 2022, 55, 3675–3687.
- 33Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L.-P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, 9, 576.
- 34X. Yang, Q. An, X. Li, Y. Fu, S. Yang, M. Liu, Q. Xu, G. Zeng, Nat. Commun. 2024, 15, 1889.
- 35P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 2023, 62, e202304349.
- 36P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, J. Schmidt, A. Thomas, J. Am. Chem. Soc. 2024, 146, 17131–17139.
- 37H. S. Sasmal, A. K. Mahato, P. Majumder, R. Banerjee, J. Am. Chem. Soc. 2022, 144, 11482–11498.
- 38H.-Q. Yin, J.-C. Yang, X.-B. Yin, Anal. Chem. 2017, 89, 13434–13440.
- 39L. Hu, G. Zhan, L. Zhao, J. Dai, X. Zou, J. Wang, W. Hou, H. Li, Y. Yao, L. Zhang, Adv. Mater. 2024, 36, 2400870.
- 40S. Haldar, K. Roy, S. Nandi, D. Chakraborty, D. Puthusseri, Y. Gawli, S. Ogale, R. Vaidhyanathan, Adv. Energy Mater. 2018, 8, 1702170.
- 41Y. Sun, J. Weng, P. Zhou, W. Yuan, Y. Pan, X. Wu, J. Zhou, F. Cheng, Adv. Mater. 2024, 36, 2410575.
- 42H.-g. Wang, H. Wang, Z. Si, Q. Li, Q. Wu, Q. Shao, L. Wu, Y. Liu, Y. Wang, S. Song, H. Zhang, Angew. Chem. Int. Ed. 2019, 58, 10204–10208.
- 43S. Fletcher, Curr. Opin. Electroche. 2023, 37, 101199.
- 44M. v. d. Merwe, R. E. Wibowo, C. E. Jimenez, C. Escudero, G. Agostini, M. Bär, R. Garcia-Diez, ACS Catal. 2024, 14, 16759–16769.
- 45K. Sakaushi, G. Nickerl, F. M. Wisser, D. Nishio-Hamane, E. Hosono, H. Zhou, S. Kaskel, J. Eckert, Angew. Chem. Int. Ed. 2012, 51, 7850–7854.
- 46Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang, Z. Shen, S. Mao, J. Mao, J. Zhang, Y. Tan, K. Shen, J. Lv, W. Hu, Y. He, Y. Lu, Nat. Commun. 2023, 14, 6296.
- 47X. Xue, L. Hu, M. Shi, S. Wang, C. Yan, Adv. Energy Mater. 2025, 2405551.
- 48L. Teng, J. Duan, H. Liu, X. Zhang, J. Li, Y. Li, J. Hong, W. Lyu, Y. Liao, J. Mater. Chem. A 2024, 12, 12423–12434.
- 49E. Vitaku, C. N. Gannett, K. L. Carpenter, L. Shen, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2020, 142, 16–20.
- 50C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, B. Dunn, Nat. Rev. Mater. 2020, 5, 5–19.
- 51X. Yang, L. Gong, X. Liu, P. Zhang, B. Li, D. Qi, K. Wang, F. He, J. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202207043.
- 52L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen, E. Jin, X. Song, Z. Liang, K.-X. Wang, J. Am. Chem. Soc. 2022, 144, 23534–23542.
- 53H. Gao, A. R. Neale, Q. Zhu, M. Bahri, X. Wang, H. Yang, Y. Xu, R. Clowes, N. D. Browning, M. A. Little, L. J. Hardwick, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9434–9442.
- 54K. Du, R. Tao, C. Guo, H. Li, X. Liu, P. Guo, D. Wang, J. Liang, J. Li, S. Dai, X.-G. Sun, Nano Energy 2022, 103, 107862.
- 55X. Liu, Y. Jin, H. Wang, X. Yang, P. Zhang, K. Wang, J. Jiang, Adv. Mater. 2022, 34, 2203605.
- 56C. Liu, X. Huang, X. Yu, Z. Wang, Y. Shen, S. Yuan, Y. Wang, Angew. Chem. Int. Ed. 2025, 64, e202415915.
- 57S. Zhong, H. Zhao, Y. Ji, X. Li, T. Shu, Z. Cui, S. Liao, J. Mater. Chem. A 2024, 12, 11571–11579.
- 58S. Haldar, A. Schneemann, S. Kaskel, J. Am. Chem. Soc. 2023, 145, 13494–13513.
- 59C. Ye, X. Zhou, S. Tang, Angew. Chem. Int. Ed. 2025, e202501743.
- 60X.-Y. Li, S. Feng, Y.-W. Song, C.-X. Zhao, Z. Li, Z.-X. Chen, Q. Cheng, X. Chen, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2024, 146, 14754–14764.
- 61W. Ma, Y. Guo, J. Sun, C. Zhang, Y. Zhu, H. Sun, L. Huang, Z. Hu, H. Wang, M. Zhu, G. Wang, Angew. Chem. Int. Ed. 2025, 64, e202418999.
- 62H. Zhang, Z. Chen, Z. Sun, M. Cai, W. Liu, W. Ye, H. Gao, J. Han, Y. Cheng, Q. Zhang, M.-S. Wang, Adv. Funct. Mater. 2023, 33, 2300769.
- 63Z. Chang, H. Yang, Y. Qiao, X. Zhu, P. He, H. Zhou, Adv. Mater. 2022, 34, 2201339.
- 64K. Wang, J. Duan, X. Chen, J. Wang, J. Li, L. Jiang, Y. Wei, W. Lyu, Y. Liao, Adv. Energy Mater. 2024, 14, 2401146.
- 65F. Li, X. Gu, A. Cui, Y. Li, S. Dong, S. Wu, Z. Cheng, Q. Yao, J. Yang, M. Wu, Adv. Funct. Mater. 2024, 34, 2313146.
- 66Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Joule 2022, 6, 1172–1198.