An Immediate Bacterial-Responsive Supramolecular Thio-Naphthalene Diimide: A Real-Time NIR-II Photothermal Anti-Bacterial
Corresponding Author
He Ma
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYushen Kang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWeiquan Xu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYuanchen Shen
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuacheng Yu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHao Hu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXingchen Tang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJiang-Fei Xu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Xi Zhang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
He Ma
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYushen Kang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWeiquan Xu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYuanchen Shen
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuacheng Yu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHao Hu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXingchen Tang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJiang-Fei Xu
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Xi Zhang
Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A supramolecular thio-naphthalene diimide can be immediately reduced to a supramolecular radical anion by bacteria, leading to a NIR-II absorption. This strategy effectively raises the reduction potential, thereby greatly boosting the reduction speed. This approach has been used as a real-time NIR-II photothermal anti-bacterial and opens new horizons for bio-responsive agents.
Abstract
A new kind of supramolecular thio-naphthalene diimide (SNDI) which can be immediately reduced as supramolecular radical anion by bacteria is reported. The introduction of thiocarbonyl effectively elevates the reduction potential of SNDI, largely increasing the bacteria-response speed in hypoxia. It selectively distinguishes the bacteria with high and low reduction ability in real time. The host–guest complexation of SNDI and cucurbit[7]uril can enhance radical anion quantum yield, ensuring intense NIR-II absorption and realizing high photothermal conversion. The real-time NIR-II photothermal anti-bacteria is successfully carried out. This development will enrich the design of bio-responsive agent with promising future towards actual application.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The crystallographic data are available from the Cambridge Crystallographic Data Centre under CCDC-2407931. The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505069-sup-0001-SupMat.docx6.3 MB | Supporting Information |
anie202505069-sup-0002-SNDI-Br.cif968.5 KB | Supporting Information |
anie202505069-sup-0003-Video1.mp41.8 MB | Supporting Information |
anie202505069-sup-0004-Video2.mp41.3 MB | Supporting Information |
anie202505069-sup-0005-Video3.mp41.8 MB | Supporting Information |
anie202505069-sup-0006-Video4.mp41.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Guha, F. S. Goodson, L. J. Corson, S. Saha, J. Am. Chem. Soc. 2012, 134, 13679–13691
- 2H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature 2000, 404, 478–481.
- 3H. Langhals, H. Jaschke, Chem.-Eur. J. 2006, 12, 2815–2824.
- 4S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev. 2008, 37, 331–342.
- 5M. R. Molla, S. Ghosh, Chem.-Eur. J. 2012, 18, 1290–1294.
- 6S. Maniam, R. P. Cox, S. J. Langford, T. D. M. Bell, Chem.-Eur. J. 2015, 21, 4133–4140.
- 7F. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev. 2016, 116, 962–1052.
- 8Toby D. M. Bell, Sheryll Yap, Chintan H. Jani, Sheshanath V. Bhosale, Johan Hofkens, Frans C. De Schryver, Steven J. Langford, Kenneth P. Ghiggino, Chem. Asian J. 2009, 4, 1542–1550.
- 9Z. Yuan, Y. Ma, T. Geßner, M. Li, L. Chen, M. Eustachi, R. T. Weitz, C. Li, K. Müllen, Org. Lett. 2016, 18, 456–459.
- 10F. Würthner, M. Stolte, Chem. Commun. 2011, 47, 5109.
- 11T. He, M. Stolte, F. Würthner, Adv. Mater. 2013, 25, 6951–6955.
- 12S.-L. Suraru, F. Würthner, Angew. Chem. Int. Ed. 2014, 53, 7428–7448.
- 13F. Würthner, S. Ahmed, C. Thalacker, T. Debaerdemaeker, Chem.-Eur. J. 2002, 8, 4742–4750.
10.1002/1521-3765(20021018)8:20<4742::AID-CHEM4742>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 14X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333–5336.
- 15N. Sakai, J. Mareda, E. Vauthey, S. Matile, Chem. Commun. 2010, 46, 4225.
- 16S. Bhosale, A. L. Sisson, P. Talukdar, A. Fürstenberg, N. Banerji, E. Vauthey, G. Bollot, J. Mareda, C. Röger, F. Würthner, N. Sakai, S. Matile, Science 2006, 313, 84–86.
- 17R. S. K. Kishore, O. Kel, N. Banerji, D. Emery, G. Bollot, J. Mareda, A. Gomez-Casado, P. Jonkheijm, J. Huskens, P. Maroni, M. Borkovec, E. Vauthey, N. Sakai, S. Matile, J. Am. Chem. Soc. 2009, 131, 11106–11116.
- 18A. Insuasty, S. Maniam, S. J. Langford, Chem.-Eur. J. 2019, 25, 7058–7073.
- 19A. Sarkar, T. Behera, R. Sasmal, R. Capelli, C. Empereur-mot, J. Mahato, S. S. Agasti, G. M. Pavan, A. Chowdhury, S. J. George, J. Am. Chem. Soc. 2020, 142, 11528–11539.
- 20L. Tan, Y. Guo, Y. Yang, G. Zhang, D. Zhang, G. Yu, W. Xu, Y. Liu, Chem. Sci. 2012, 3, 2530.
- 21R. Matsidik, H. Komber, M. Brinkmann, K. S. Schellhammer, F. Ortmann, M. Sommer, J. Am. Chem. Soc. 2023, 145, 8430–8444.
- 22M. Hussain, A. M. El-Zohry, Y. Hou, A. Toffoletti, J. Zhao, A. Barbon, O. F. Mohammed, J. Phys. Chem. B 2021, 125, 10813–10831.
- 23I. Giri, S. Chhetri, J. John P, M. Mondal, A. B. Dey, R. K. Vijayaraghavan, Chem. Sci. 2024, 15, 9630–9640.
- 24F. S. Etheridge, R. Fernando, J. A. Golen, A. L. Rheingold, G. Sauve, RSC Adv. 2015, 5, 46534–46539.
- 25S. Ahn, M. Son, V. Singh, A. Yun, M.-H. Baik, H. R. Byon, J. Am. Chem. Soc. 2024, 146, 4521–4531.
- 26X. Liu, H. Zhang, C. Liu, Z. Wang, X. Zhang, H. Yu, Y. Zhao, M.-J. Li, Y. Li, Y.-L. He, G. He, Angew. Chem. Int. Ed. 2024, 63, e202405427.
- 27H. Hu, Y.-Y. Zhang, H. Ma, Y. Yang, S. Mei, J. Li, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202308513.
- 28K. Liu, C. Wang, Z. Li, X. Zhang, Angew. Chem. Int. Ed. 2011, 50, 4952–4956.
- 29Y. Wu, S. Schneider, C. Walter, A. H. Chowdhury, B. Bahrami, H.-C. Wu, Q. Qiao, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2020, 142, 392–406.
- 30S. K. Mohan Nalluri, J. Zhou, T. Cheng, Z. Liu, M. T. Nguyen, T. Chen, H. A. Patel, M. D. Krzyaniak, W. A. Goddard III, M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc. 2019, 141, 1290–1303.
- 31C. J. Bruns, J. Li, M. Frasconi, S. T. Schneebeli, J. Iehl, H.-P. Jacquot de Rouville, S. I. Stupp, G. A. Voth, J. F. Stoddart, Angew. Chem. Int. Ed. 2014, 53, 1953–1958.
- 32Q. Liao, Q. Kang, Y. Yang, Z. Zheng, J. Qin, B. Xu, J. Hou, CCS Chem. 2022, 4, 938–948.
- 33X. Liu, X. Zhang, C. Bao, Z. Wang, H. Zhang, G. Li, N. Yan, M.-J. Li, G. He, CCS Chem. 2023, 5, 2334–2347.
- 34V.-N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, J. Am. Chem. Soc. 2019, 141, 16243–16248.
- 35L. A. Ortiz-Rodríguez, S. J. Hoehn, A. Loredo, L. Wang, H. Xiao, C. E. Crespo-Hernández, J. Am. Chem. Soc. 2021, 143, 2676–2681.
- 36J. Tang, M. A. Robichaux, K.-L. Wu, J. Pei, N. T. Nguyen, Y. Zhou, T. G. Wensel, H. Xiao, J. Am. Chem. Soc. 2019, 141, 14699–14706.
- 37Z. Yin, Y. Yang, J. Yang, G. Song, H. Hu, P. Zheng, J.-F. Xu, CCS Chem. 2022, 4, 3285–3295.
- 38H. Hu, H. Wang, Y. Yang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200799.
- 39Deposition Numbers 2407931 (for SNDI-Br) https://doi.org/10.5517/ccdc.csd.cc2ltn69 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformations zentrum Karlsruhe Access Structures service.
10.5517/ccdc.csd.cc2ltn69 Google Scholar
- 40Y. Yang, P. He, Y. Wang, H. Bai, S. Wang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 16239–16242.
- 41H. Wang, K.-F. Xue, Y. Yang, H. Hu, J.-F. Xu, X. Zhang, J. Am. Chem. Soc. 2022, 144, 2360–2367.
- 42Y. Jiao, W.-L. Li, J.-F. Xu, G. Wang, J. Li, Z. Wang, X. Zhang, Angew. Chem. Int. Ed. 2016, 55, 8933–8937.
- 43B. Tang, J. Zhao, Y. Jiao, J.-F. Xu, X. Zhang, Chem. Commun. 2019, 55, 14127–14130.
- 44Y. Jin Jeon, S.-Y. Kim, Y. Ho Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Org. Biomol. Chem. 2005, 3, 2122.
- 45J. M. Chinai, A. B. Taylor, L. M. Ryno, N. D. Hargreaves, C. A. Morris, P. J. Hart, A. R. Urbach, J. Am. Chem. Soc. 2011, 133, 8810–8813.
- 46L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu, J. Liu, H.-Q. Yu, J. K. Fredrickson, Nat. Rev. Microbiol. 2016, 14, 651–662
- 47C. M. Dundas, A. J. Graham, D. K. Romanovicz, B. K. Keitz, ACS Synth. Biol. 2018, 7, 2726–2736.