Boosting Urea Electrosynthesis via Asymmetric Oxygen Vacancies in Zn-Doped Fe2O3 Catalysts
Xinning Song
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiangyuan Jin
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTianhui Chen
College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Shoujie Liu
School of Materials Science and Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorDr. Xiaodong Ma
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Xingxing Tan
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRuhan Wang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLibing Zhang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXing Tong
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZiwei Zhao
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Xinchen Kang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Qinggong Zhu
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Qingli Qian
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaofu Sun
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXinning Song
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiangyuan Jin
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTianhui Chen
College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Shoujie Liu
School of Materials Science and Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorDr. Xiaodong Ma
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Xingxing Tan
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRuhan Wang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLibing Zhang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXing Tong
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZiwei Zhao
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Xinchen Kang
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Qinggong Zhu
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dr. Qingli Qian
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaofu Sun
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Urea electrosynthesis from CO2 and nitrate (NO3−) provides an attractive pathway for storing renewable electricity and substituting traditional energy-intensive urea synthesis technology. However, the kinetics mismatching between CO2 reduction and NO3− reduction, as well as the difficulty of C─N coupling, are major challenges in urea electrosynthesis. Herein, we first calculated the free energy of *CO, *OCNO, and *NOH formation over defect-rich Fe2O3 catalysts with different metal dopants, which showed that Zn dopant was a promising candidate. Based on the theoretical study, we developed Zn-doped defect-rich Fe2O3 catalysts (Zn–Fe2O3/OV) containing asymmetric Zn–OV–Fe sites. It exhibited an outstanding urea faradaic efficiency of 62.4% and the remarkable recycling stability. The production rate of urea was as high as 7.48 mg h−1 mgcat−1, which is higher than most of the reported works to date. Detailed control experiments and in situ spectroscopy analyses identified *OCNO as a crucial intermediate for C─N coupling. The Zn–Fe2O3/OV catalyst with asymmetric Zn–OV–Fe sites showed enhanced *CO coverage and promoted *OCNO formation, leading to high efficiency toward urea production.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202501830-supp-0001-SuppMat.docx10.8 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Yang, H. An, S. Arnouts, H. Wang, X. Yu, J. de Ruiter, S. Bals, T. Altantzis, B. M. Weckhuysen, W. van der Stam, Nat. Catal. 2023, 6, 796–806.
- 2X. Song, L. Xu, X. Sun, B. Han, Sci. China Chem. 2023, 66, 315–323.
- 3Y. Wu, Z. Jiang, Z. Lin, Y. Liang, H. Wang, Nat. Sustain. 2021, 4, 725–730.
- 4J. Li, H. Al-Mahayni, D. Chartrand, A. Seifitokaldani, N. Kornienko, Nat. Synth. 2023, 2, 757–765.
- 5L. Zhang, J. Feng, L. Wu, X. Ma, X. Song, S. Jia, X. Tan, X. Jin, Q. Zhu, X. Kang, J. Ma, Q. Qian, L. Zheng, X. Sun, B. Han, J. Am. Chem. Soc. 2023, 145, 21945–21954.
- 6Z. Wang, Y. Li, X. Zhao, S. Chen, Q. Nian, X. Luo, J. Fan, D. Ruan, B.-Q. Xiong, X. Ren, J. Am. Chem. Soc. 2023, 145, 6339–6348.
- 7X. Song, C. Basheer, Y. Xia, J. Li, I. Abdulazeez, A. A. Al-Saadi, M. Mofidfar, M. A. Suliman, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 25910–25916.
- 8Z. Zhang, D. Li, Y. Tu, J. Deng, H. Bi, Y. Yao, Y. Wang, T. Li, Y. Luo, S. Sun, D. Zheng, S. A. C. Carabineiro, Z. Chen, J. Zhu, X. Sun, SusMat 2024, 4, e193.
- 9X. Fan, C. Liu, X. He, Z. Li, L. Yue, W. Zhao, J. Li, Y. Wang, T. Li, Y. Luo, D. Zheng, S. Sun, Q. Liu, L. Li, W. Chu, F. Gong, B. Tang, Y. Yao, X. Sun, Adv. Mater. 2024, 36, 2401221.
- 10X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Nat. Commun. 2022, 13, 5471.
- 11Y. Zhang, X. Fan, X. He, T. Yan, Y. Yao, D. Zheng, J. Zhao, Q. Cai, Q. Liu, L. Li, W. Chu, S. Sun, X. Sun, Chin. Chem. Lett. 2024, 35, 109806.
- 12J. Shao, H. Jing, P. Wei, X. Fu, L. Pang, Y. Song, K. Ye, M. Li, L. Jiang, J. Ma, R. Li, R. Si, Z. Peng, G. Wang, J. Xiao, Nat. Energy 2023, 8, 1273–1283.
- 13C. Ma, L. Bao, X. Fan, X. He, X. Liu, W. Chu, A. Farouk, M. S. Hamdy, S. Sun, Q. Li, M. Wu, X. Sun, Catal. Sci. Technol. 2024, 14, 3007–3011.
- 14K. Dong, Y. Yao, H. Li, H. Li, S. Sun, X. He, Y. Wang, Y. Luo, D. Zheng, Q. Liu, Q. Li, D. Ma, X. Sun, B. Tang, Nat. Synth. 2024, 3, 763–773.
- 15W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.
- 16D. Yan, C. Xia, W. Zhang, Q. Hu, C. He, B. Y. Xia, S. Wang, Adv. Energy Mater. 2022, 12, 2202317.
- 17T. S. Bui, E. C. Lovell, R. Daiyan, R. Amal, Adv. Mater. 2023, 35, 2205814.
- 18K. K. Patra, Z. Liu, H. Lee, S. Hong, H. Song, H. G. Abbas, Y. Kwon, S. Ringe, J. Oh, ACS Catal. 2022, 12, 10973–10983.
- 19J. Wu, L. Xu, Z. Kong, K. Gu, Y. Lu, X. Wu, Y. Zou, S. Wang, Angew. Chem. Int. Ed. 2023, 62, e202311196.
- 20Z. Zhao, P. Wang, C. Song, T. Zhang, S. Zhan, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202216403.
- 21Y. Mao, P. Wang, L. Li, Z. Chen, H. Wang, Y. Li, S. Zhan, Angew. Chem. Int. Ed. 2020, 59, 3685–3690.
- 22J. Zhang, K. Wu, J. Xiong, Q. Ren, J. Zhong, H. Cai, H. Huang, P. Chen, J. Wu, L. Chen, Appl. Catal. B 2022, 316, 121620.
- 23X. Zhou, J. Lan, G. Liu, K. Deng, Y. Yang, G. Nie, J. Yu, L. Zhi, Angew. Chem. Int. Ed. 2012, 51, 178–182.
- 24R. Gao, J. Wang, Z.-F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.-J. Zou, Nat. Energy 2021, 6, 614–623.
- 25W. Hu, Y. Liu, R. L. Withers, T. J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 2013, 12, 821–826.
- 26H. Yang, L. Gong, H. Wang, C. Dong, J. Wang, K. Qi, H. Liu, X. Guo, B. Y. Xia, Nat. Commun. 2020, 11, 5075.
- 27Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J. Am. Chem. Soc. 2020, 142, 12087–12095.
- 28D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc. 2020, 142, 7883–7888.
- 29L. Li, X. Feng, Y. Nie, S. Chen, F. Shi, K. Xiong, W. Ding, X. Qi, J. Hu, Z. Wei, L.-J. Wan, M. Xia, ACS Catal. 2015, 5, 4825–4832.
- 30S. Zhao, D. Kang, Y. Liu, Y. Wen, X. Xie, H. Yi, X. Tang, ACS Catal. 2020, 10, 11739–11750.
- 31J. Zhang, Z. Wang, X. Lin, X. Gao, Q. Wang, R. Huang, Y. Ruan, H. Xu, L. Tian, C. Ling, R. Shi, S. Xu, K. Chen, Y. Wu, Angew. Chem. Int. Ed. 2024, 64, e202416686.
- 32Y. Song, J. Min, Y. Guo, R. Li, G. Zou, M. Li, Y. Zang, W. Feng, X. Yao, T. Liu, X. Zhang, J. Yu, Q. Liu, P. Zhang, R. Yu, X. Cao, J. Zhu, K. Dong, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2024, 63, e202313361.
- 33B. Wang, C. Cheng, M. Jin, J. He, H. Zhang, W. Ren, J. Li, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202207268.
- 34J. Liu, P. Li, J. Bi, S. Jia, Y. Wang, X. Kang, X. Sun, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 23037–23047.
- 35Y. Zhao, X. Chang, A. S. Malkani, X. Yang, L. Thompson, F. Jiao, B. Xu, J. Am. Chem. Soc. 2020, 142, 9735–9743.
- 36Y.-C. Zhang, X.-L. Zhang, Z.-Z. Wu, Z.-Z. Niu, L.-P. Chi, F.-Y. Gao, P.-P. Yang, Y.-H. Wang, P.-C. Yu, J.-W. Duanmu, S.-P. Sun, M.-R. Gao, Proc. Natl. Acad. Sci. USA 2024, 121, e2400546121.
- 37X. Kong, J. Zhao, J. Ke, C. Wang, S. Li, R. Si, B. Liu, J. Zeng, Z. Geng, Nano Lett. 2022, 22, 3801–3808.
- 38K. L. Kostov, H. Rauscher, D. Menzel, Surf. Sci. 1992, 278, 62–86.
- 39J. W. Cable, R. K. Sheline, Chem. Rev. 1956, 56, 1–26.
- 40T. J. Dines, C. H. Rochester, A. M. Ward, Faraday Trans. 1991, 87, 643–651.
- 41N. Sergent, M. Epifani, T. Pagnier, J. Raman Spectrosc. 2006, 37, 1272–1277.
- 42W. Gao, K. Xie, J. Xie, X. Wang, H. Zhang, S. Chen, H. Wang, Z. Li, C. Li, Adv. Mater. 2023, 35, 2202952.
- 43C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nat. Chem. 2020, 12, 717–724.
- 44Z. Lv, S. Zhou, L. Zhao, Z. Liu, J. Liu, W. Xu, L. Wang, J. Lai, Adv. Energy Mater. 2023, 13, 2300946.
- 45X. Wei, Y. Liu, X. Zhu, S. Bo, L. Xiao, C. Chen, T. T. T. Nga, Y. He, M. Qiu, C. Xie, D. Wang, Q. Liu, F. Dong, C.-L. Dong, X.-Z. Fu, S. Wang, Adv. Mater. 2023, 35, 2300020.
- 46J.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu, G. Li, O. Akdim, X.-Y. Huang, S.-G. Sun, Nat. Commun. 2022, 13, 7899.
- 47L. Wu, J. Feng, L. Zhang, S. Jia, X. Song, Q. Zhu, X. Kang, X. Xing, X. Sun, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202307952.
- 48Y. Luo, K. Xie, P. Ou, C. Lavallais, T. Peng, Z. Chen, Z. Zhang, N. Wang, X.-Y. Li, I. Grigioni, B. Liu, D. Sinton, J. B. Dunn, E. H. Sargent, Nat. Catal. 2023, 6, 939–948.
- 49M. Sun, G. Wu, J. Jiang, Y. Yang, A. Du, L. Dai, X. Mao, Q. Qin, Angew. Chem. Int. Ed. 2023, 62, e202301957.
- 50C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Nat. Sustain. 2021, 4, 868–876.
- 51J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu, G. Wang, C. Liang, H. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202210958.
- 52X. Song, X. Ma, T. Chen, L. Xu, J. Feng, L. Wu, S. Jia, L. Zhang, X. Tan, R. Wang, C. Chen, J. Ma, Q. Zhu, X. Kang, X. Sun, B. Han, J. Am. Chem. Soc. 2024, 146, 25813–25823.
- 53L. Zhou, X. Zhu, H. Su, H. Lin, Y. Lyu, X. Zhao, C. Chen, N. Zhang, C. Xie, Y. Li, Y. Lu, J. Zheng, B. Johannessen, S. P. Jiang, Q. Liu, Y. Li, Y. Zou, S. Wang, Sci. China Chem. 2021, 64, 1586–1595.
- 54N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 15895–15903.
- 55M. Mihaylov, K. Hadjiivanov, Langmuir 2002, 18, 4376–4383.
- 56X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X.-Z. Fu, S. Wang, J. Am. Chem. Soc. 2022, 144, 11530–11535.
- 57K. I. Hadjiivanov, Catal. Rev. 2000, 42, 71–144.
- 58G. Neri, J. J. Walsh, G. Teobaldi, P. M. Donaldson, A. J. Cowan, Nat. Catal. 2018, 1, 952–959.
- 59M. Qiu, X. Zhu, S. Bo, K. Cheng, N. He, K. Gu, D. Song, C. Chen, X. Wei, D. Wang, Y. Liu, S. Li, X. Tu, Y. Li, Q. Liu, C. Li, S. Wang, CCS Chem. 2023, 5, 2617–2627.