Layered-Spinel Heterogeneous Structure and Oxygen Vacancies Enable Superior Electrochemical Performance for Li-Rich Cathodes
Pengkun Yang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorDr. Long Shang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorDr. Huimin Wang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Zhenhua Yan
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Kai Zhang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yixin Li
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
E-mail: [email protected]; [email protected].
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
E-mail: [email protected]; [email protected].
Search for more papers by this authorPengkun Yang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorDr. Long Shang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorDr. Huimin Wang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Zhenhua Yan
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Kai Zhang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yixin Li
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
E-mail: [email protected]; [email protected].
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
E-mail: [email protected]; [email protected].
Search for more papers by this authorGraphical Abstract
A multifunctional interfacial layer of layered-spinel heterogeneous structure and oxygen vacancies was formed on the surface of LRMOs, which improved the structural stability and the reversibility of anion redox reaction. The treated cathode features high initial capacity of 314.5 mAh g−1 with a coulombic efficiency of 88.3%. When cycling at 1 C, the cathode shows a high capacity retention of 87.9% with a small voltage decay of 1.26 mV per cycle.
Abstract
Lithium-rich manganese-based oxides (LRMOs) materials are considered to be the next-generation cathode for high-energy lithium-ion/metal batteries owing to their superior specific capacity, high operation voltage, and low cost. However, the commercial application of LRMOs is constrained by the surface structure degradation and lattice oxygen release, resulting in low initial coulombic efficiency (ICE) and rapid voltage and capacity decay. Herein, we propose a facile sorbic acid-assisted surface treatment strategy to construct homogeneous multifunctional interface layers composed of layered-spinel heterogeneous structure and oxygen vacancies on the surface of LRMOs, which enhance the structure stability and improve the activity and reversibility of the anionic oxygen redox reactions. The multifunctional interfacial layers effectively suppress irreversible oxygen release and alleviate unfavorable layered-spinel phase transformation. As a consequence, the treated LRMOs cathode displays improved ICE of 88.3%, high capacity retention rate (87.9% at 1 C after 150 cycles) and low voltage decay ratio (1.26 mV per cycle). These findings provide a valuable new idea to improve the comprehensive electrochemical performance of LRMOs through multi-strategy synergistic interface engineering techniques.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202501539-supp-0001-SuppMat.docx57.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Assat, J. M. Tarascon, Nat. Energy 2018, 3, 373–386.
- 2S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 3B. Li, D. G. Xia, Adv. Mater. 2017, 29, 1701054.
- 4W. J. Kong, C. Z. Zhao, L. Shen, S. Sun, X. Y. Huang, P. Xu, Y. Lu, W. Z. Huang, J. L. Li, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2024, 146, 28190–28200.
- 5P. M. Csernica, S. S. Kalirai, W. E. Gent, K. Lim, Y. S. Yu, Y. Z. Liu, S. J. Ahn, E. Kaeli, X. Xu, K. H. Stone, A. F. Marshall, R. Sinclair, D. A. Shapiro, M. F. Toney, W. C. Chueh, Nat. Energy 2021, 6, 642–652.
- 6S. Kang, D. Choi, H. Lee, B. Choi, Y. M. Kang, Adv. Mater. 2023, 35, 2211965.
- 7Q. Y. Li, D. Zhou, L. J. Zhang, D. Ning, Z. H. Chen, Z. J. Xu, R. Gao, X. Z. Liu, D. H. Xie, G. Schumacher, X. F. Liu, Adv. Funct. Mater. 2019, 29, 1806706.
- 8R. A. House, G. J. Rees, K. McColl, J. J. Marie, M. Garcia-Fernandez, A. Nag, K. J. Zhou, S. Cassidy, B. J. Morgan, M. S. Islam, P. G. Bruce, Nat. Energy 2023, 8, 351–360.
- 9J. J. Marie, R. A. House, G. J. Rees, A. W. Robertson, M. Jenkins, J. Chen, S. Agrestini, M. Garcia-Fernadez, K. J. Zhou, P. G. Bruce, Nat. Mater. 2024, 23, 818–825.
- 10J. M. Sun, X. Cao, H. J. Yang, P. He, M. A. Dato, J. Cabana, H. S. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202207225; Angew. Chem. 2022, 61, e202207225.
- 11T. C. Liu, J. J. Liu, L. X. Li, L. Yu, J. C. Diao, T. Zhou, S. N. Li, A. Dai, W. G. Zhao, S. Y. Xu, Y. Ren, L. G. Wang, T. P. Wu, R. Qi, Y. G. Xiao, J. X. Zheng, W. Cha, R. Harder, I. Robinson, J. G. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305–312.
- 12K. Mccoll, S. W. Coles, P. Zarabadi-Poor, B. J. Morgan, M. S. Islam, Nat. Mater. 2024, 23, 826–833.
- 13X. X. Gou, Z. K. Hao, Z. M. Hao, G. J. Yang, Z. Yang, X. Y. Zhang, Z. H. Yan, Q. Zhao, J. Chen, Adv. Funct. Mater. 2022, 32, 2112088.
- 14X. Zhou, F. F. Hong, S. Wang, T. Zhao, J. L. Peng, B. Zhang, W. F. Fan, W. Y. Xing, M. H. Zuo, P. Zhang, Y. H. Zhou, G. P. Lv, Y. J. Zhong, W. B. Hua, W. Xiang, eScience 2024, 4, 100276.
- 15J. T. Hu, H. B. Wang, B. W. Xiao, P. Liu, T. Huang, Y. L. Li, X. Z. Ren, Q. L. Zhang, J. H. Liu, X. P. Ouyang, X. L. Sun, Natl. Sci. Rev. 2023, 10, nwad252.
- 16Q. Y. Li, D. Ning, D. Wong, K. An, Y. X. Tang, D. Zhou, G. Schuck, Z. H. Chen, N. A. Zhang, X. F. Liu, Nat. Commun. 2022, 13, 1123.
- 17S. Xin, X. Zhang, L. Wang, H. J. Yu, X. Chang, Y. M. Zhao, Q. H. Meng, P. Xu, C. Z. Zhao, J. H. Chen, H. C. Lu, X. R. Kong, J. L. Wang, K. Chen, G. Huang, X. B. Zhang, Y. Su, Y. Xiao, S. L. Chou, S. L. Zhang, Z. P. Guo, A. B. Du, G. L. Cui, G. J. Yang, Q. Zhao, L. B. Dong, D. Zhou, F. Y. Kang, H. Hong, C. Y. Zhi, et al, Sci. China. Chem. 2024, 67, 13–42.
- 18K. Zhang, B. A. Li, Y. X. Zuo, J. Song, H. F. Shang, F. H. Ning, D. G. Xia, Adv. Mater. 2022, 34, 2109564.
- 19H. F. Zheng, X. Han, W. B. Guo, L. Lin, Q. S. Xie, P. F. Liu, W. He, L. S. Wang, D. L. Peng, Mater. Today Energy 2020, 18, 100518.
- 20J. X. Liu, J. Q. Wang, Y. X. Ni, J. D. Liu, Y. D. Zhang, Y. Lu, Z. H. Yan, K. Zhang, Q. Zhao, F. Y. Cheng, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202207000; Angew. Chem. 2022, 61, e202207000.
- 21K. Wang, J. M. Qiu, F. C. Hou, M. Yang, K. Q. Nie, J. U. Wang, Y. C. Hou, W. Y. Huang, W. G. Zhao, P. X. Zhang, J. H. Lin, J. T. Hu, F. Pan, M. J. Zhang, Adv. Energy Mater. 2023, 13, 2301216.
- 22X. D. Zhang, J. L. Shi, J. Y. Liang, Y. X. Yin, J. N. Zhang, X. Q. Yu, Y. G. Guo, Adv. Mater. 2018, 30, 1801751.
- 23S. H. Li, H. X. Li, H. Y. Zhang, S. Zhang, Y. Q. Lai, Z. Zhang, Chem. Eng. J. 2022, 427, 132036.
- 24D. Luo, X. K. Ding, J. M. Fan, Z. H. Zhang, P. Z. Liu, X. H. Yang, J. J. Guo, S. H. Sun, Z. Lin, Angew. Chem. Int. Ed. 2020, 59, 23061–23066; Angew. Chem. 2020, 59, 23061–23066.
- 25D. Luo, H. X. Xie, F. L. Tan, X. K. Ding, J. X. Cui, X. Y. Xie, C. Y. Liu, Z. Lin, Angew. Chem. Int. Ed. 2022, 61, e202203698; Angew. Chem. 2022, 61, e202203698.
- 26J. Lin, X. Chen, X. D. Zhang, E. S. Fan, R. J. Chen, F. Wu, L. Li, eScience 2023, 3, 100110.
- 27P. P. Zhang, X. H. Zhai, H. Huang, J. F. Zhou, X. K. Wang, B. M. Chen, Z. C. Guo, Y. P. He, J. Power Sources 2021, 499, 229966.
- 28C. H. Yan, Q. N. Shao, Z. H. Yao, M. X. Gao, C. Y. Zhang, G. R. Chen, Q. W. Sun, W. P. Sun, Y. F. Liu, M. X. Gao, H. G. Pan, Small 2022, 18, 2107910.
- 29Z. K. Hao, H. X. Sun, Y. X. Ni, G. J. Yang, Z. Yang, Z. M. Hao, R. H. Wang, P. K. Yang, Y. Lu, Q. Zhao, W. W. Xie, Z. H. Yan, W. Zhang, J. Chen, Adv. Mater. 2024, 36, 2307617.
- 30X. Q. Ji, Y. X. Xu, Q. Xia, Y. C. Zhou, J. C. Song, H. L. Feng, P. F. Wang, J. Yang, Q. Q. Tan, ACS Appl. Mater. Interfaces 2022, 14, 30133–30143.
- 31J. H. Song, G. Yoon, B. Kim, D. Eum, H. Park, D. H. Kim, K. Kang, Adv. Energy Mater. 2020, 10, 2001207.
- 32J. R. He, W. B. Hua, A. Missiul, G. Melinte, C. Das, A. Tayal, T. Bergfeldt, S. Mangold, X. Y. Liu, J. R. Binder, M. Knapp, H. Ehrenberg, S. Indris, B. Schwarz, J. Maibach, J. Mater. Chem. A 2021, 9, 264–273.
- 33J. Chen, H. Y. Chen, Y. Mei, J. Q. Gao, A. Dai, Y. Tian, W. T. Deng, G. Q. Zou, H. S. Hou, C. E. Banks, T. C. Liu, K. Amine, X. B. Ji, Energy Storage Mater. 2022, 52, 736–745.
- 34Y. X. Gao, W. F. Liu, Y. T. Cui, H. S. Zhang, X. N. Li, H. Y. Dong, H. Y. Yue, S. T. Yang, Y. H. Yin, ACS Appl. Energy Mater. 2022, 5, 12109–12119.
- 35C. Wu, S. Cao, H. Li, Z. Li, G. R. Chen, X. W. Guo, B. B. Chang, Y. S. Bai, X. Y. Wang, Chem. Eng. J. 2022, 431, 134208.
- 36Y. Xie, M. Saubanère, M. L. Doublet, Energ. Environ. Sci. 2017, 10, 266–274.
- 37L. Ku, Y. X. Cai, Y. T. Ma, H. F. Zheng, P. F. Liu, Z. S. Qiao, Q. S. Xie, L. S. Wang, D. L. Peng, Chem. Eng. J. 2019, 370, 499–507.
- 38M. Parzen, F. Neumann, A. H. Van Der Weijde, D. Friedrich, A. Kiprakis, Carbon Neutrality 2022, 1, 26.
- 39H. Zhang, Z. Q. Zeng, S. J. Cheng, J. Xie, eScience 2024, 4, 100265.
- 40Y. L. Yang, T. Luo, Y. X. Zuo, H. C. Wang, C. Gao, J. F. Cai, T. H. Yang, W. K. Xiao, Y. Yu, D. G. Xia, Adv. Mater. 2024, 2414786.
- 41Y. K. Lei, J. Ni, Z. J. Hu, Z. M. Wang, F. K. Gui, B. Li, P. W. Ming, C. M. Zhang, Y. Elias, D. Aurbach, Q. F. Xiao, Adv. Energy Mater. 2020, 10, 2002506.
- 42W. He, W. B. Guo, H. L. Wu, L. Lin, Q. Liu, X. Han, Q. S. Xie, P. F. Liu, H. F. Zheng, L. S. Wang, X. Q. Yu, D. L. Peng, Adv. Mater. 2021, 33, 2005937.
- 43C. Shen, L. B. Hu, Q. M. Duan, X. Y. Liu, S. S. Huang, Y. Jiang, W. R. Li, B. Zhao, X. L. Sun, J. J. Zhang, Adv. Energy Mater. 2023, 13, 2302957.
- 44W. E. Gent, K. Lim, Y. F. Liang, Q. H. Li, T. Barnes, S. J. Ahn, K. H. Stone, M. McIntire, J. Y. Hong, J. H. Song, Y. Y. Li, A. Mehta, S. Ermon, T. Tyliszczak, D. Kilcoyne, D. Vine, J. H. Park, S. K. Doo, M. F. Toney, W. L. Yang, D. Prendergast, W. C. Chueh, Nat. Commun. 2017, 8, 2091.
- 45Y. Lin, M. Zhou, X. L. Tai, H. F. Li, X. Han, J. G. Yu, Matter 2021, 4, 2309–2339.
- 46X. R. Liu, J. Y. Cheng, Y. L. Guan, S. T. Huang, F. Lian, Mater. Chem. Front. 2023, 7, 3434–3454.
- 47J. Chen, H. Y. Chen, W. T. Deng, X. Gao, S. Y. Yin, Y. Mei, S. Zhang, L. S. Ni, J. Q. Gao, H. Q. Liu, Y. Tian, L. Yang, X. L. Deng, G. Q. Zou, H. S. Hou, J. Y. Xie, X. B. Ji, Energy Storage Mater. 2022, 51, 671–682.
- 48X. G. Gao, S. H. Li, H. Y. Zhang, S. Zhang, S. L. Chang, H. X. Li, S. M. Li, Y. Q. Lai, Z. Zhang, Mater. Today Energy 2022, 30, 101152.
- 49T. G. Lin, T. U. Schulli, Y. X. Hu, X. B. Zhu, Q. F. Gu, B. Luo, B. Cowie, L. Z. Wang, Adv. Funct. Mater. 2020, 30, 1909192.
- 50X. Ding, D. Luo, J. Cui, H. Xie, Q. Ren, Z. Lin, Angew. Chem. Int. Ed. 2020, 59, 7778–7782; Angew. Chem. 2020, 59, 7778–7782.