Enhancing Efficiency and Stability of Inverted Flexible Perovskite Solar Cells via Multi-Functionalized Molecular Design
Hongbo Liang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen, 440300 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorWenjing Zhu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhichao Lin
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorBin Du
School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hao Gu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorTianwen Chen
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorFenqi Du
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorLaju Bu
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYibo Zhou
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorXianqiang Xie
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYingjie Zhu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYuexin Lin
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorWenhan Yang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorNan Zhang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorCorresponding Author
Liming Ding
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shengchun Yang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chao Liang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorHongbo Liang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen, 440300 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorWenjing Zhu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhichao Lin
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorBin Du
School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hao Gu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorTianwen Chen
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorFenqi Du
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorLaju Bu
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYibo Zhou
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorXianqiang Xie
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYingjie Zhu
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorYuexin Lin
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorWenhan Yang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorNan Zhang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorCorresponding Author
Liming Ding
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shengchun Yang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chao Liang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
We specifically introduced a 4-BBA molecule into the perovskite film to form a multifunctional bridging structure anchored with the SAM layer, which passivated Pb2+ ion defects and regulated crystallization of the perovskite film, enhancing interfacial contact and releasing residual strain. The resultant f-PSCs achieved a high PCE of 25.30% (25.13% certified) with a record VOC of 1.21 V.
Abstract
Inverted flexible perovskite solar cells (f-PSCs) are promising candidates for mechanical photovoltaic applications due to their ease of preparation, lightweight, and portability. However, the weak interface connections, residual strain, and the nonradiative recombination loss among adjacent layers are critical challenges that restrict f-PSCs development. To address these issues, a functionalized molecule with multiple hydrogen bond acceptors, 4-Carboxyphenylboronic acid (4-BBA), is designed in the perovskite precursor for modulating perovskite crystallization, which achieves uniform and stress-relaxation perovskite film and forms a robust bridging structure anchored at the buried interface. Theoretical calculation and experimental results show that the C═O group passivates Pb2+ with I− vacancy defect through Lewis acid-base interactions, reducing trap-assisted recombination. Furthermore, the designed 4-BBA is preferentially deposited at the buried layer interface between the perovskite and substrate, forming hydrogen bonds with the self-assembled monolayer via B─OH bonds, creating a mechanically stable bridge between the layers. As a result, the power conversion efficiency of the champion f-PSC reached 25.30% (25.13% certified). And the f-PSC open-circuit voltage set a record of 1.21V. Importantly, the unencapsulated f-PSC using 4-BBA retains 95.3% of its original performance after 5000 cycles at a bending radius of 10mm, demonstrating extraordinary bending stability.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202501267-sup-0001-SuppMat.docx25.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing, Z. Huang, Z. Huang, Y. Cui, T. Hu, M. Su, X. Liao, L. Zhang, F. Wang, Y. Song, Y. Chen, Nat. Commun. 2020, 11, 3016.
- 2W. Cai, P. Zou, S. Rong, H. Wang, X. Chen, Z. Zhang, Y. Wang, C. Liu, T. Yang, T. Niu, S. Jin, W. Tian, J. Yao, S. (Frank) Liu, K. Zhao, Energy Environ. Sci. 2024, 17, 8162–8173.
- 3Y. Meng, C. Liu, R. Cao, J. Zhang, L. Xie, M. Yang, L. Xie, Y. Wang, X. Yin, C. Liu, Z. Ge, Adv. Funct. Mater. 2023, 33, 2214788.
- 4M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, N. Mathews, Chem. Commun. 2013, 49, 11089.
- 5Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han, L. Xie, R. Tian, X. Lu, Z. Song, J. Li, S. Yang, C. Lu, Z. Ge, Joule 2024, 8, 1120–1141.
- 6N. Ren, L. Tan, M. Li, J. Zhou, Y. Ye, B. Jiao, L. Ding, C. Yi, iEnergy 2024, 3, 39–45.
- 7S. He, S. Li, A. Zhang, G. Xie, X. Wang, J. Fang, Y. Qi, L. Qiu, Mater. Adv. 2022, 3, 6316.
- 8D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, M. I. Saidaminov, S. O. Kelley, J.-S. Hu, E. H. Sargent, Nat. Commun. 2020, 11, 1514.
- 9X. Hu, Z. Huang, F. Li, M. Su, Z. Huang, Z. Zhao, Z. Cai, X. Yang, X. Meng, P. Li, Y. Wang, M. Li, Y. Chen, Y. Song, Energy Environ. Sci. 2019, 12, 979–987.
- 10L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu, H. Wang, C. Gong, T. Hu, X. Hu, R. Guo, Y. Chen, Angew. Chem. 2021, 133, 14814–14821.
- 11X. Wu, G. Xu, F. Yang, W. Chen, H. Yang, Y. Shen, Y. Wu, H. Chen, J. Xi, X. Tang, Q. Cheng, Y. Chen, X. Ou, Y. Li, Y. Li, ACS Energy Lett. 2023, 8, 3750–3759.
- 12C. Chen, Z. Su, Y. Lou, Y. Yu, K. Wang, G. Liu, Y. Shi, J. Chen, J. Cao, L. Zhang, X. Gao, Z. Wang, Adv. Mater. 2022, 34, 2200320.
- 13S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404–409.
- 14J. Wu, L. Torresi, M. Hu, P. Reiser, J. Zhang, J. S. Rocha-Ortiz, L. Wang, Z. Xie, K. Zhang, B. Park, A. Barabash, Y. Zhao, J. Luo, Y. Wang, L. Lüer, L.-L. Deng, J. A. Hauch, D. M. Guldi, M. E. Pérez-Ojeda, S. I. Seok, P. Friederich, C. J. Brabec, Science 2024, 386, 1256–1264.
- 15X. Wang, J. Li, R. Guo, X. Yin, R. Luo, D. Guo, K. Ji, L. Dai, H. Liang, X. Jia, J. Chen, Z. Jia, Z. Shi, S. Liu, Y. Wang, Q. Zhou, T. Wang, G. Pan, P. Müller-Buschbaum, S. D. Stranks, Y. Hou, Nat. Photon. 2024, 18, 1269–1275.
- 16X. Tong, L. Xie, J. Li, Z. Pu, S. Du, M. Yang, Y. Gao, M. He, S. Wu, Y. Mai, Z. Ge, Adv. Mater. 2024, 36, 2407032.
- 17W. Xu, B. Chen, Z. Zhang, Y. Liu, Y. Xian, X. Wang, Z. Shi, H. Gu, C. Fei, N. Li, M. A. Uddin, H. Zhang, L. Dou, Y. Yan, J. Huang, Nat. Photon. 2024, 18, 379–387.
- 18L. Dong, S. Qiu, S. Feroze, M. Wagner, O. Kasian, H. Peisert, F. U. Kosasih, C. Ducati, J. Garcia Cerrillo, J. Tian, C. Li, D. Jang, V. M. Le Corre, N. Li, F. Yang, T. Du, C. J. Brabec, H.-J. Egelhaaf, Energy Environ. Sci. 2024, 17, 7147–7154.
- 19B. Fan, J. Xiong, Y. Zhang, C. Gong, F. Li, X. Meng, X. Hu, Z. Yuan, F. Wang, Y. Chen, Adv. Mater. 2022, 34, 2201840.
- 20Z. Dai, S. Li, X. Liu, M. Chen, C. E. Athanasiou, B. W. Sheldon, H. Gao, P. Guo, N. P. Padture, Adv. Mater. 2022, 34, 2205301.
- 21D. Gao, B. Li, Z. Li, X. Wu, S. Zhang, D. Zhao, X. Jiang, C. Zhang, Y. Wang, Z. Li, N. Li, S. Xiao, W. C. H. Choy, A. K.-Y. Jen, S. Yang, Z. Zhu, Adv. Mater. 2023, 35, 2206387.
- 22H. Liu, Z. Zhang, Z. Su, W. Zuo, Y. Tang, F. Yang, X. Zhang, C. Qin, J. Yang, Z. Li, M. Li, Adv. Sci. 2022, 9, 2105739.
- 23J. Liu, D. Zheng, K. Wang, Z. Li, S. Liu, L. Peng, D. Yang, Joule 2024, 8, 944–969.
- 24T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 25J. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.
- 26M. Li, J. Zhou, L. Tan, H. Li, Y. Liu, C. Jiang, Y. Ye, L. Ding, W. Tress, C. Yi, The Innovation 3, 100310.
- 27H. Zhang, R. Wang, L. Yang, Z. Hu, H. Liu, Y. Liu, Angew. Chem. 2024, 63, 202318206.
- 28R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509–1513.
- 29D. Tozini, M. Forti, P. Gargano, P. R. Alonso, G. H. Rubiolo, Procedia Mater. Sci. 2015, 9, 612–618.
- 30X. Yang, H. Yang, M. Su, J. Zhao, X. Meng, X. Hu, T. Xue, Z. Huang, Y. Lu, Y. Li, Z. Yang, Sol. RRL 2022, 6, 2100991.
- 31Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, Z. He, Nature 2023, 620, 545–551.
- 32Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278–283.
- 33J. Jing, Y. Dou, S. Chen, K. Zhang, F. Huang, eScience 2023, 3, 100142.
- 34S. Ma, J. Tang, G. Yuan, Y. Zhang, Y. Wang, Y. Wu, C. Zhu, Y. Wang, S. Wu, Y. Lu, S. Chi, T. Song, H. Zhou, M. Sui, Y. Li, Q. Chen, Energy Environ. Mater. 2024, 7, e12739.
- 35A. Mishra, M. A. Hope, L. Emsley, ACS Energy Lett. 2024, 9, 5074–5080.
- 36M. Ledinsky, T. Schönfeldová, J. Holovský, E. Aydin, Z. Hájková, L. Landová, N. Neyková, A. Fejfar, S. De Wolf, J. Phys, Chem. Lett. 2019, 10, 1368.
- 37T. Xue, B. Fan, K.-J. Jiang, Q. Guo, X. Hu, M. Su, E. Zhou, Y. Song, Energy Environ. Sci. 2024, 17, 2621–2630.
- 38J. Fang, D. Lin, G. Xie, S. Li, H. Li, X. Wang, D. Wang, N. Huang, H. Peng, L. Gan, Y. Zhu, S. He, L. Qiu, Energy Environ. Sci. 2024, 17, 7829–7837.
- 39J. Li, H. Liang, C. Xiao, X. Jia, R. Guo, J. Chen, X. Guo, R. Luo, X. Wang, M. Li, M. Rossier, A. Hauser, F. Linardi, E. Alvianto, S. Liu, J. Feng, Y. Hou, Nat. Energy 2024, 9, 308–315.
- 40F. Du, H. Gu, W. Jiang, W. Yang, Y. Lin, W. Zhu, X. Qin, X. Xie, L. Bu, X. Liu, S. Yang, C. Liang, Adv. Funct. Mater. 2024, 2413281.
- 41L. Chen, C. Li, Y. Xian, S. Fu, A. Abudulimu, D. Li, J. D. Friedl, Y. Li, S. Neupane, M. S. Tumusange, N. Sun, X. Wang, R. J. Ellingson, M. J. Heben, N. J. Podraza, Z. Song, Y. Yan, Adv. Energy Mater. 2023, 13, 2301218.
- 42T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu, J. Feng, N. Wu, H. Li, W. Huang, Z. Ding, L. Gao, S. (Frank) Liu, K. Zhao, Joule 2023, 7, 574–586.
- 43J.-W. Lee, H.-S. Kim, N.-G. Park, Acc. Chem. Res. 2016, 49, 311–319.
- 44Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967–970.
- 45Z. Li, H. Gu, X. Liu, H. Wang, N. Zhang, J. Liao, D. Yu, X. Xie, Y. Zhou, G. Fang, Y. Chen, J. Xia, S. Yang, C. Liang, Adv. Mater. 2024, 36, 2410408.
- 46J. Peng, V. Ji, W. Seiler, A. Tomescu, A. Levesque, A. Bouteville, Surf. Coat. Technol. 2006, 200, 2738–2743.
- 47C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 48X. Jiang, X. Wang, X. Wu, S. Zhang, B. Liu, D. Zhang, B. Li, P. Xiao, F. Xu, H. Lu, T. Chen, A. K.-Y. Jen, S. Yang, Z. Zhu, Adv. Energy Mater. 2023, 13, 2300700.
- 49J. Chen, X. Fan, J. Wang, J. Wang, J. Zeng, Z. Zhang, J. Li, W. Song, ACS Nano 2024, 18, 19190–19199.
- 50Y. Wu, G. Xu, Y. Shen, X. Wu, X. Tang, C. Han, Y. Chen, F. Yang, H. Chen, Y. Li, Y. Li, Adv. Mater. 2024, 36, 2403531.
- 51X. Tang, B. Shao, B. Li, M. Li, L. Jiang, M. Abulikemu, H. Zhu, J. Xia, O. M. Bakr, H. Liu, ACS Energy Lett. 2024, 9, 5679–5687.
- 52X. Li, B. Ding, J. Huang, Z. Zhang, H. Dong, H. Yu, Z. Liu, L. Dai, Y. Shen, Y. Ding, P. J. Dyson, M. K. Nazeeruddin, M. Wang, Adv. Mater. 2024, 2410338.
- 53C. Wang, C. Gong, W. Ai, B. Fan, X. Meng, S. Shi, X. Hu, Y. Chen, Adv. Mater. 2025, 37, 2417779.
- 54G. A. Nemnes, C. Besleaga, V. Stancu, D. E. Dogaru, L. N. Leonat, L. Pintilie, K. Torfason, M. Ilkov, A. Manolescu, I. Pintilie, J. Phys. Chem. C 2017, 121, 11207–11214.
- 55Q. Wang, Y. Chen, X. Chen, W. Tang, W. Qiu, X. Xu, Y. Wu, Q. Peng, Adv. Mater. 2024, 36, 2307709.
- 56D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. (Frank) Liu, R. P. H. Chang, Energy Environ. Sci. 2016, 9, 3071–3078.
- 57Q. Wang, J. Zhu, Y. Zhao, Y. Chang, N. Hao, Z. Xin, Q. Zhang, C. Chen, H. Huang, Q. Tang, Carbon Energy 2024, 6, e566.
- 58Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat. Photon. 2015, 9, 106–112.
- 59K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Adv. Mater. 2016, 28, 10718–10724.
- 60E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511–515.