Design and Construction of D-A-Extended 3D Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
Huijie Li
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
Search for more papers by this authorJie Fan
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorMengxu Ran
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
Search for more papers by this authorRahul Anil Borse
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
Search for more papers by this authorCorresponding Author
Shao-Xia Lin
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daqiang Yuan
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuijie Li
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
Search for more papers by this authorJie Fan
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorMengxu Ran
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
Search for more papers by this authorRahul Anil Borse
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
Search for more papers by this authorCorresponding Author
Shao-Xia Lin
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daqiang Yuan
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350108 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This study successfully developed three distinct 3D extended D-A COFs with a pyr topology by employing a newly designed intrinsic D-A type building block. Among these, the A-D-A structured COF stands out due to its multiple charge transfer channels in 3D space, resulting in an enhanced photocatalytic hydrogen evolution rate. This finding provides valuable insights into designing extended D-A constructs within 3D frameworks to optimize photocatalytic performance.
Abstract
The development of donor–acceptor (D-A) covalent–organic frameworks (COFs) has emerged as a promising strategy for enhancing photocatalytic performance. Although most studies have concentrated on 2D COFs, research into their 3D counterparts remains limited. In this study, we rationally designed and synthesized a carbazoyl dicyanobenzene derivative (TBFCC) as an intrinsic D-A building block. By selecting TAPA, TAPB, and TAPT as the donor, acceptor-π, and acceptor donors, respectively, we synthesized three distinct D-A-extended COF materials: D-D-A, A-π-D-A, and A-D-A. Among these, 3D-TAPT-COF, featuring an A-D-A structure, exhibited the highest hydrogen evolution rate of 31.3 mmol g−1 h−1, surpassing most previously reported 3D COF-based photocatalysts. This superior performance is attributed to its A-D-A configuration, which provides multiple charge transfer pathways in 3D space, overcoming the electron transport limitations inherent in 2D COFs. Consequently, this feature facilitates efficient separation of photogenerated charges within the framework and reduces carrier recombination, thereby optimizing photocatalytic efficiency.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202500937-sup-0001-SuppMat.docx19.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253–278.
- 2Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611–615.
- 3T. Banerjee, F. Podjaski, J. Kröger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 2020, 6, 168–190.
- 4H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 2021, 598, 304–307.
- 5L. Yuan, M. Y. Qi, Z. R. Tang, Y. J. Xu, Angew. Chem. Int. Ed. 2021, 60, 21150–21172.
- 6X. Li, L. Li, G. Chen, X. Chu, X. Liu, C. Naisa, D. Pohl, M. Löffler, X. Feng, Nat. Commun. 2023, 14, 4034.
- 7S. Liu, M. Wang, T. Qian, H. Ji, J. Liu, C. Yan, Nat. Commun. 2019, 10, 3898.
- 8Y. Ma, L. Shang, J. Li, Y. Wu, G. Che, C. Liu, Q. Fang, Chem. Eng. J. 2024, 484, 149347.
- 9B. Pieber, J. A. Malik, C. Cavedon, S. Gisbertz, A. Savateev, D. Cruz, T. Heil, G. Zhang, P. H. Seeberger, Angew. Chem. Int. Ed. 2019, 58, 9575–9580.
- 10H. Pang, D. Huang, Y. Xiang, ChemCatChem 2024, 16, e202400724.
- 11R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 2013, 4, 1432.
- 12C. F. Fu, X. Wu, J. Yang, Adv. Mater. 2018, 30, e1802106.
- 13Y. Wang, F. Silveri, M. K. Bayazit, Q. Ruan, Y. Li, J. Xie, C. R. A. Catlow, J. Tang, Adv. Energy Mater. 2018, 8, 1801084.
- 14M. Ai, J. W. Zhang, Y. W. Wu, L. Pan, C. Shi, J. J. Zou, Chem. Asian J. 2020, 15, 3599–3619.
- 15W. K. Han, Y. Liu, X. Yan, Y. Jiang, J. Zhang, Z. G. Gu, Angew. Chem. Int. Ed. 2022, 61, e202208791.
- 16C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585.
- 17D. D. Medina, T. Sick, T. Bein, Adv. Energy Mater. 2017, 7, 1700387.
- 18K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 19Y. Yue, D. Ji, Y. Liu, D. Wei, Chem. Eur. J. 2024, 30, e202302474.
- 20H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev. 2020, 49, 4135–4165.
- 21C. Zhao, Z. Chen, R. Shi, X. Yang, T. Zhang, Adv. Mater. 2020, 32, 1907296.
- 22H. Lin, Y. Liu, Z. Wang, L. Ling, H. Huang, Q. Li, L. Cheng, Y. Li, J. Zhou, K. Wu, J. Zhang, T. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202214142.
- 23H. Zhang, Z. Lin, P. Kidkhunthod, J. Guo, Angew. Chem. Int. Ed. 2023, 62, e202217527.
- 24F. Ma, Q. Tang, S. Xi, G. Li, T. Chen, X. Ling, Y. Lyu, Y. Liu, X. Zhao, Y. Zhou, J. Wang, Chin. J. Catal. 2023, 48, 137–149.
- 25Z. Xie, X. Yang, P. Zhang, X. Ke, X. Yuan, L. Zhai, W. Wang, N. Qin, C.-X. Cui, L. Qu, X. Chen, Chin. J. Catal. 2023, 47, 171–180.
- 26L. Qin, C. Ma, J. Zhang, T. Zhou, Adv. Funct. Mater. 2024, 34, 2401562.
- 27S. Li, L. Li, Y. Li, L. Dai, C. Liu, Y. Liu, J. Li, J. Lv, P. Li, B. Wang, ACS Catal. 2020, 10, 8717–8726.
- 28Y. Xia, W. Zhang, S. Yang, L. Wang, G. Yu, Adv. Mater. 2023, 35, e2301190.
- 29M. Xu, S. Yu, W. Li, C. Li, Y. Peng, F. Yu, Polym. Chem. 2023, 14, 5133–5139.
- 30W. Chen, Z. Yang, Z. Xie, Y. Li, X. Yu, F. Lu, L. Chen, J. Mater. Chem. A 2019, 7, 998–1004.
- 31Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, X. Liu, Appl. Catal. B Environ. 2019, 245, 334–342.
- 32W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902–16909.
- 33C. Shu, C. Han, X. Yang, C. Zhang, Y. Chen, S. Ren, F. Wang, F. Huang, J. X. Jiang, Adv. Mater. 2021, 33, 2008498.
- 34C. Han, S. Xiang, S. Jin, C. Zhang, J.-X. Jiang, ACS Catal. 2022, 13, 204–212.
- 35Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S.-W. Yang, X. Liu, J. Am. Chem. Soc. 2023, 145, 8364–8374.
- 36H. Zhao, F. Huang, G. Liu, Y. Liu, Y. Wang, X. Liu, C. Xing, J. Gao, X. Yue, Y. Jiang, ACS Sustain. Chem. Eng. 2024, 12, 12775–12785.
- 37M. Zhang, P. Huang, J. P. Liao, M. Y. Yang, S. B. Zhang, Y. F. Liu, M. Lu, S. L. Li, Y. P. Cai, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202311999.
- 38L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li, Sci. China Mater. 2024, 67, 504–513.
- 39X. M. Lu, H. Wang, Y. Sun, Y. Xu, W. Sun, Y. Wu, Y. Zhang, C. Yang, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202409436.
- 40H. He, R. Shen, Y. Yan, D. Chen, Z. Liu, L. Hao, X. Zhang, P. Zhang, X. Li, Chem. Sci. 2024, 15, 20002–20012.
- 41N. Liu, S. Xie, Y. Huang, J. Lu, H. Shi, S. Xu, G. Zhang, X. Chen, Adv. Energy Mater. 2024, 14, 2402395.
- 42H. Xu, Y. Wang, Y. Xu, Q. Wang, M. Zhuang, Q. Liao, K. Xi, Angew. Chem. Int. Ed. 2024, 63, e202408802.
- 43C. Shu, X. Yang, L. Liu, X. Hu, R. Sun, X. Yang, A. I. Cooper, B. Tan, X. Wang, Angew. Chem. Int. Ed. 2024, 63, e202403926.
- 44Q. Huang, H. Zhang, H. Yang, Z. Yu, Z. Xu, Z. Li, Z. Gao, J.-P. Zou, Appl. Catal. B Environ. 2025, 362, 124721.
- 45Y. Meng, Y. Luo, J. L. Shi, H. Ding, X. Lang, W. Chen, A. Zheng, J. Sun, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 3624–3629.
- 46R. M. Zhu, Y. Liu, W. K. Han, J. D. Feng, J. Zhang, H. Pang, J. Zhang, Z. G. Gu, Angew. Chem. Int. Ed. 2024, e202412890.
- 47W. Z. Wang, P. J. Tian, Y. Fu, X. Wan, X. Lei, C. Jia, C. Liu, Q. Y. Qi, S. Q. Xu, X. Zhao, Angew. Chem. Int. Ed. 2025, 64, e202418086.
- 48Y. Wang, Z. Qiao, H. Li, R. Zhang, Z. Xiang, D. Cao, S. Wang, Angew. Chem. Int. Ed. 2024, 63, e202404726.
- 49Y. Wan, P. Sun, L. Shi, X. Yan, X. Zhang, J. Phys. Chem. Lett. 2023, 14, 7411–7420.
- 50Y. Xie, F. Mao, Q. Rong, X. Liu, M. Hao, Z. Chen, H. Yang, G. I. N. Waterhouse, S. Ma, X. Wang, Adv. Funct. Mater. 2024, 34, 2411077.
- 51H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 52M. Li, Y. Liu, R. Duan, X. Wei, Y. Yi, Y. Wang, C. F. Chen, Angew. Chem. Int. Ed. 2017, 56, 8818–8822.
- 53E. Speckmeier, T. G. Fischer, K. Zeitler, J. Am. Chem. Soc. 2018, 140, 15353–15365.
- 54M. Yokoyama, K. Inada, Y. Tsuchiya, H. Nakanotani, C. Adachi, Chem. Commun. 2018, 54, 8261–8264.
- 55W. Ou, R. Zou, M. Han, L. Yu, C. Su, Chin. Chem. Lett. 2020, 31, 1899–1902.
- 56T. Ma, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48–52.
- 57X. H. Han, R. R. Liang, Z. B. Zhou, Q. Y. Qi, X. Zhao, Chem. Commun. 2023, 59, 2461–2464.
- 58R. Xia, X. Zheng, C. Li, X. Yuan, J. Wang, Z. Xie, X. Jing, ACS Nano 2021, 15, 7638–7648.
- 59Y. Hou, P. Zhou, F. Liu, Y. Lu, H. Tan, Z. Li, M. Tong, J. Ni, Angew. Chem. Int. Ed. 2024, 63, e202318562.
- 60L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789–2793.
- 61P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, A. Thomas, J. Schmidt, J. Am. Chem. Soc. 2018, 140, 1423–1427.