Acridine-Substituted-Centronucleus Nonfullerene Acceptors Enables Organic Solar Cells with Over 20% Efficiency with Low Nonradiative Recombination Loss
Jinfeng Liu
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorCorresponding Author
Xiaopeng Duan
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunjie Zhang
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorZhongwei Ge
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorLiming Liu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 P.R. China
Search for more papers by this authorJiawei Qiao
School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P.R. China
Search for more papers by this authorYuxuan Li
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000 P.R. China
Search for more papers by this authorZhaozhao Bi
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorHuotian Zhang
Department of Physics, Chemistry, and Biology, Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorJiaxin Gao
State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorJun Yan
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 P.R. China
Search for more papers by this authorSha Liu
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000 P.R. China
Search for more papers by this authorJianqi Zhang
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorZheng Tang
State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorXiaotao Hao
School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P.R. China
Search for more papers by this authorWei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorFeng Gao
Department of Physics, Chemistry, and Biology, Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorCorresponding Author
Yanming Sun
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJinfeng Liu
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorCorresponding Author
Xiaopeng Duan
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunjie Zhang
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorZhongwei Ge
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorLiming Liu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 P.R. China
Search for more papers by this authorJiawei Qiao
School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P.R. China
Search for more papers by this authorYuxuan Li
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000 P.R. China
Search for more papers by this authorZhaozhao Bi
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorHuotian Zhang
Department of Physics, Chemistry, and Biology, Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorJiaxin Gao
State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorJun Yan
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 P.R. China
Search for more papers by this authorSha Liu
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000 P.R. China
Search for more papers by this authorJianqi Zhang
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorZheng Tang
State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorXiaotao Hao
School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P.R. China
Search for more papers by this authorWei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.R. China
Search for more papers by this authorFeng Gao
Department of Physics, Chemistry, and Biology, Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorCorresponding Author
Yanming Sun
School of Chemistry, Beihang University, Beijing, 100191 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Three small-molecule acceptors, AQx, AQx-o-Ac, and AQx-m-Ac, were designed and synthesized, differing in their acridine substitutions. AQx-m-Ac demonstrates minimal static disorder, reduced nonradiative energy loss, and enhanced crystallization, culminating in a PCE of 18.64% in PM6:AQx-m-Ac OSCs. Incorporating AQx-m-Ac as a third component into the PM6:eC9 blend elevated the PCE of the optimal ternary system to 20.28%.
Abstract
In this work, we propose a novel strategy of introducing luminescent acridine units for central nuclear substitution in quinoxaline-based acceptor molecules (named AQx-o-Ac and AQx-m-Ac) to enhance their photoluminescence quantum yields (PLQY), which can effectively improve the electroluminescent quantum efficiency (EQEEL) of OSCs and thereby suppress ΔEnr. In addition, the substituted acridine unit accelerates molecular aggregation and optimizes molecular crystallization, effectively alleviating the static disorder of acceptor molecules and facilitating charge extraction and transport in OSCs. As a result, the PM6:AQx-m-Ac binary OSCs achieve an excellent PCE of 18.64% with an exceptionally low ΔEnr of 0.166 eV. To the best of our knowledge, a ΔEnr of 0.166 eV represents the lowest value reported for OSCs achieving PCEs over 18 %. Finally, the acceptor AQx-m-Ac is incorporated into PM6:eC9 blend as the third component, and the optimal ternary device produces a superior PCE of 20.28%. This work highlights the potential of promoting luminescence for suppressing nonradiative energy loss and charts a viable path for upcoming breakthrough in high-efficiency organic photovoltaics.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202500129-sup-0001-SupMat.docx33.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Jia, S. Qin, L. Meng, Q. Ma, I. Angunawela, J. Zhang, X. Li, Y. He, W. Lai, N. Li, H. Ade, C. J. Brabec, Y. Li, Nat. Commun. 2021, 12, 178.
- 2J. Ge, L. Xie, R. Peng, B. Fanady, J. Huang, W. Song, T. Yan, W. Zhang, Z. Ge, Angew. Chem. Int. Ed. 2020, 59, 2808–2815.
- 3Q. Ye, Z. Chen, D. Yang, W. Song, J. Zhu, S. Yang, J. Ge, F. Chen, Z. Ge, Adv. Mater. 2023, 35, 2305562.
- 4T. Yan, W. Song, J. Huang, R. Peng, L. Huang, Z. Ge, Adv. Mater. 2019, 31, 1902210.
- 5W. Song, Q. Ye, S. Yang, L. Xie, Y. Meng, Z. Chen, Q. Gu, D. Yang, J. Shi, Z. Ge, Angew. Chem. Int. Ed. 2023, 62, 202310034.
- 6J. Song, C. Zhang, C. Li, J. Qiao, J. Yu, J. Gao, X. Wang, X. Hao, Z. Tang, G. Lu, R. Yang, H. Yan, Y. Sun, Angew. Chem. Int. Ed. 2024, 63, e202404297.
- 7C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo, Z. Gan, J. Zhou, Y. Sun, D. Liu, W. Li, T. Wang, 2024, Nat. Commun. 15, 6865.
- 8Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171–184.
- 9Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu, C. Chen, W. Xia, Z. Gan, J. Cheng, J. Zhou, D. Liu, T. Wang, W. Li, J. Am. Chem. Soc. 2024, 146, 12011–12019.
- 10N. Li, J. D. Perea, T. Kassar, M. Richter, T. Heumueller, G. J. Matt, Y. Hou, N. S. Güldal, H. Chen, S. Chen, S. Langner, M. Berlinghof, T. Unruh, C. J. Brabec, Nat. Commun. 2017, 8, 14541.
- 11A. J. Gillett, A. Privitera, R. Dilmurat, A. Karki, D. Qian, A. Pershin, G. Londi, W. K. Myers, J. Lee, J. Yuan, S.-J. Ko, M. K. Riede, F. Gao, G. C. Bazan, A. Rao, T.-Q. Nguyen, D. Beljonne, R. H. Friend, Nature 2021, 597, 666–671.
- 12D. He, F. Zhao, C. Wang, Y. Lin, Adv. Funct. Mater. 2022, 32, 2111855.
- 13Q. Liu, K. Vandewal, Adv. Mater. 2023, 35, 2302452.
- 14D. Qian, Z. Zheng, H. Yao, W. Tress, T. R. Hopper, S. Chen, S. Li, J. Liu, S. Chen, J. Zhang, X.-K. Liu, B. Gao, L. Ouyang, Y. Jin, G. Pozina, I. A. Buyanova, W. M. Chen, O. Inganäs, V. Coropceanu, J.-L. Bredas, H. Yan, J. Hou, F. Zhang, A. A. Bakulin, F. Gao, Nat. Mater. 2018, 17, 703–709.
- 15Y. Wang, M. Chang, B. Kan, X. Wan, C. Li, Y. Chen, Adv. Energy Mater. 2018, 1, 2150–2156.
- 16L. Zhang, D. Deng, K. Lu, Z. Wei, Adv. Mater. 2024, 36, 2302915.
- 17X.-K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress, H. Yao, J. Yuan, M. Hülsbeck, M. Zhang, Y. Zou, Y. Sun, Y. Li, J. Hou, O. Inganäs, V. Coropceanu, J.-L. Bredas, F. Gao, Nat. Energy 2021, 6, 799–806.
- 18K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, X. Deng, H. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. Zhang, A. K.-Y. Jen, Nat. Energy 2022, 7, 1076–1086.
- 19R. Suthar, H. Dahiya, A. K. Singh, G. D. Sharma, S. Karak, ACS Appl. Mater. Interfaces 2023, 15, 3214–3223.
- 20S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 2020, 14, 300–305.
- 21V. C. Nikolis, A. Mischok, B. Siegmund, J. Kublitski, X. Jia, J. Benduhn, U. Hormann, D. Neher, M. C. Gather, D. Spoltore, K. Vandewal, Nat. Commun. 2019, 10, 3706.
- 22J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, K. Vandewal, Nat. Energy 2017, 2, 1–6.
- 23S. M. Menke, N. A. Ran, G. C. Bazan, R. H. Friend, Joule 2018, 2, 25–35.
- 24J. Yan, E. Rezasoltani, M. Azzouzi, F. Eisner, J. Nelson, Nat. Commun. 2021, 12, 3642.
- 25Q. Guo, Y. Liu, M. Liu, H. Zhang, X. Qian, J. Yang, J. Wang, W. Xue, Q. Zhao, X. Xu, W. Ma, Z. Tang, Y. Li, Z. Bo, Adv. Mater. 2020, 32, 2003164.
- 26H. Lu, D. Li, W. Liu, G. Ran, H. Wu, N. Wei, Z. Tang, Y. Liu, W. Zhang, Z. Bo, Angew. Chem. Int. Ed. 2024, 63, e202407007.
- 27R. Zeng, S. Xu, J. Deng, S. Tan, G. Zhou, M. Zhang, L. Zhu, F. Han, X. Xue, A. Zhang, H. Tan, L. Zhang, C. Zhu, C. Wang, X. Wu, Z. Fink, T. P. Russell, Y. Zhang, F. Liu, Adv. Energy Mater. 2024, 14, 2401561.
- 28H. Lu, W. Liu, H. Jin, H. Huang, Z. Tang, Z. J. Bo, Adv. Funct. Mater. 2022, 32, 2107756.
- 29Q. Liu, S. Smeets, S. Mertens, Y. Xia, A. Valencia, J. D'Haen, W. Maes, K. Vandewal, Joule 2021, 5, 2365–2379.
- 30I. A. MacKenzie, L. Wang, N. P. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76–80.
- 31W. Zeng, T. Zhou, W. Ning, C. Zhong, J. He, S. Gong, G. Xie, C. Yang, Adv. Mater. 2019, 31, 1901404.
- 32R. A. Street, J. E. Northrup, A. Salleo, Phys. Rev. B 2005, 71, 165202.
- 33H. Bässler, Phys. status solidi. B, Basic Research 1993, 175, 15–56.
- 34M. Azzouzi, J. Yan, T. Kirchartz, K. Liu, J. Wang, H. Wu, J. Nelson, Phys. Rev. 2018, 8, 031055.
- 35M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, J. Mater. Chem. A 2017, 5, 3589–3598.
- 36D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, S. Park, Sci. Adv. 2016, 2, e1501571.
- 37L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509.
- 38J. Liu, X. Duan, J. Song, C. Liu, J. Gao, M. H. Jee, Z. Tang, H. Y. Woo, Y. Sun, Energy Environ. Sci. 2024, 17, 3641–3650.
- 39L. Wang, C. Chen, Y. Fu, C. Guo, D. Li, J. Cheng, W. Sun, Z. Gan, Y. Sun, B. Zhou, C. Liu, D. Liu, W. Li, T. Wang, Nat. Energy 2024, 9, 208–218.
- 40C. He, Z. Chen, T. Wang, Z. Shen, Y. Li, J. Zhou, J. Yu, H. Fang, Y. Li, S. Li, X. Lu, W. Ma, F. Gao, Z. Xie, V. Coropceanu, H. Zhu, J.-L. Bredas, L. Zuo, H. Chen, Nat. Commun. 2022, 13, 2598.
- 41D. Han, Y. Han, Y. Kim, J.-W. Lee, D. Jeong, H. Park, G.-U. Kim, F. S. Kim, B. J. Kim, J. Mater. Chem. A 2022, 10, 640–650.
- 42V. C. Nikolis, J. Benduhn, F. Holzmueller, F. Piersimoni, M. Lau, O. Zeika, D. Neher, C. Koerner, D. Spoltore, K. Vandewal, Adv. Energy Mater. 2017, 7, 1700855.
- 43A. Foertig, A. Baumann, D. Rauh, V. Dyakonov, C. Deibel, Appl. Phy. Lett. 2009, 95, 052104.
- 44B.-Q. Lin, J.-X. Guo, P. Chu, W.-J. Huo, Z. Xing, B.-G. Huang, L. Wu, Phys. Rev. Appl. 2018, 9, 024038.
- 45A. H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S. O. Kelley, E. H. Sargent, J. Am. Chem. Soc. 2018, 140, 2890–2896.
- 46R. Wang, J. Xu, L. Fu, C. Zhang, Q. Li, J. Yao, X. Li, C. Sun, Z.-G. Zhang, X. Wang, Y. Li, J. Ma, M. Xiao, J. Am. Chem. Soc. 2021, 143, 4359–4366.
- 47Z. Ge, J. Qiao, Y. Li, J. Song, X. Duan, Z. Fu, H. Hu, R. Yang, H. Yin, X. Hao, Y. Sun, Angew. Chem. Int. Ed. 2024, 137, e202413309.
- 48S. Chandrabose, K. Chen, A. J. Barker, J. J. Sutton, S. K. Prasad, J. Zhu, J. Zhou, K. C. Gordon, Z. Xie, X. Zhan, J. M. Hodgkiss, J. Am. Chem. Soc. 2019, 141, 6922–6929.
- 49Z. Shen, J. Yu, G. Lu, K. Wu, Q. Wang, L. Bu, X. Liu, Y. Zhu, G. Lu, Energy Environ. Sci. 2023, 16, 2945–2956.
- 50X. Li, A. Tang, H. Wang, Z. Wang, M. Du, Q. Guo, Q. Guo, E. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202306847.
- 51L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656–663.