Sprayed Microdroplets Architect a Polyoxometalate Framework
Abhijit Nandy
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
Search for more papers by this authorGajiram Murmu
Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013 India
Search for more papers by this authorAnitesh Rana
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
Search for more papers by this authorCorresponding Author
Sumit Saha
Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shibdas Banerjee
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbhijit Nandy
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
Search for more papers by this authorGajiram Murmu
Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013 India
Search for more papers by this authorAnitesh Rana
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
Search for more papers by this authorCorresponding Author
Sumit Saha
Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shibdas Banerjee
Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
Although many past attempts have utilized micron-sized droplets for breaking and forming organic bonds, their potential in promoting inorganic bond formation reactions remains largely unexplored. We report a promising approach to synthesizing a tungsten-based Lindqvist-type polyoxometalate (POM) in various organic and aqueous microdroplets under ambient conditions, eliminating the traditional need for hazardous or corrosive chemicals and high-boiling solvents. When aerosolized, a simple tungstate (WO42−) solution spontaneously produces a metal-oxo cluster (W6O192−), a valuable POM with broad applications, achieving yields up to 99% in less than a millisecond. Mass spectrometric detection of reactive intermediates unraveled the nucleation mechanism in microdroplets, leading to the formation of polyoxotungstate, which was then further characterized by X-ray crystallography. Empirical observations collectively suggest that rapid solvent evaporation and subsequent enrichment of reactants in the confined volume of microdroplets likely facilitate the growth of the POM through partial solvation at the air–liquid interface.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
anie202424745-sup-0001-SuppMat.pdf6.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Banerjee, H. Prakash, S. Mazumdar, J. Am. Soc. Mass Spectrom. 2011, 22, 1707–1717.
- 2Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2022, 144, 19709–19713.
- 3X. Song, Y. Meng, R. N. Zare, J. Am. Chem. Soc. 2022, 144, 16744–16748.
- 4D. Zhang, X. Yuan, C. Gong, X. Zhang, J. Am. Chem. Soc. 2022, 144, 16184–16190.
- 5H. Chen, R. Wang, J. Xu, X. Yuan, D. Zhang, Z. Zhu, M. Marshall, K. Bowen, X. Zhang, J. Am. Chem. Soc. 2023, 145, 2647–2652.
- 6Y. Ju, H. Zhang, Y. Jiang, W. Wang, G. Kan, K. Yu, X. Wang, J. Liu, J. Jiang, Nat. Eco. Evol. 2023, 7, 1892–1902.
- 7Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 32–36.
- 8Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 7724–7728.
- 9Y. Meng, R. N. Zare, E. Gnanamani, J. Am. Chem. Soc. 2023, 145, 19202–19206.
- 10A. Nandy, A. Kumar, S. Mondal, D. Koner, S. Banerjee, J. Am. Chem. Soc. 2023, 145, 15674–15679.
- 11X. Song, C. Basheer, R. N. Zare, Proce. Natl. Acad. Sci. USA 2023, 120, e2301206120.
- 12X. Song, C. Basheer, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 27198–27204.
- 13A. Kumar, V. S. Avadhani, A. Nandy, S. Mondal, B. Pathak, V. K. N. Pavuluri, M. M. Avulapati, S. Banerjee, Anal. Chem. 2024.
- 14B. K. Spoorthi, K. Debnath, P. Basuri, A. Nagar, U. V. Waghmare, T. Pradeep, Science 2024, 384, 1012–1017.
- 15K.-H. Huang, Z. Wei, R. G. Cooks, Chem. Sci. 2021, 12, 2242–2250.
- 16W. Zhang, H. Cheng, J. Liu, ACS Sust. Chem. Eng. 2018, 6, 8125–8129.
- 17Y.-H. Lai, S. Sathyamoorthi, R. M. Bain, R. N. Zare, J. Am. Soc. Mass Spectrom. 2018, 29, 1036–1043.
- 18R. M. Bain, C. J. Pulliam, R. G. Cooks, Chem. Sci. 2015, 6, 397–401.
- 19M. Girod, E. Moyano, D. I. Campbell, R. G. Cooks, Chem. Sci. 2011, 2, 501–510.
- 20R. M. Bain, C. J. Pulliam, S. T. Ayrton, K. Bain, R. G. Cooks, Rap. Commun. Mass Spectrom. 2016, 30, 1875–1878.
- 21X. Yan, R. M. Bain, R. G. Cooks, Angew. Chem., Int. Ed. 2016, 55, 12960–12972.
- 22Z. Long, Y. Wang, Q. Fu, J. Ouyang, L. He, N. Na, Nanoscale 2019, 11, 11093–11098.
- 23P. Basuri, L. E. Gonzalez, N. M. Morato, T. Pradeep, R. G. Cooks, Chem. Sci. 2020, 11, 12686–12694.
- 24B. Zheng, X. Jin, J. Liu, H. Cheng, ACS Sust. Chem. Eng. 2021, 9, 4383–4390.
- 25S. Banerjee, E. Gnanamani, X. Yan, R. N. Zare, Analyst 2017, 142, 1399–1402.
- 26K. Li, K. Gong, J. Liu, L. Ohnoutek, J. Ao, Y. Liu, X. Chen, G. Xu, X. Ruan, H. Cheng, J. Han, G. Sui, M. Ji, V. K. Valev, L. Zhang, Cell Rep. Phys. Sci. 2022, 3, 100917.
- 27E. K. Brown, G. Rovelli, K. R. Wilson, Chem. Sci. 2023, 14, 6430–6442.
- 28Y. Gao, B. Xia, Chem. Commun. 2023, 59, 10773–10776.
- 29L. Xue, B. Zheng, J. Sun, J. Liu, H. Cheng, ACS Sust. Chem. Eng. 2023, 11, 12780–12789.
- 30Y. Wu, H. Cheng, J. Li, J. Liu, J. Sun, J. Org. Chem. 2023, 88, 11186–11196.
- 31A. Kumar, S. Mondal, M. Mofidfar, R. N. Zare, S. Banerjee, J. Am. Chem. Soc. 2022, 144, 7573–7577.
- 32A. Kumar, S. Mondal, S. Banerjee, J. Am. Chem. Soc. 2021, 143, 2459–2463.
- 33A. Kumar, S. Mondal, Sandeep, P. V., A. Kumar, S. Banerjee, J. Am. Chem. Soc. 2022, 144, 3347–3352.
- 34K. R. Wilson, A. M. Prophet, Annu. Rev. Phys. Chem. 2024, 75, 185–208.
- 35X. Yan, Int. J. Mass Spectrom. 2021, 468, 116639.
- 36Z. Song, C. Zhu, K. Gong, R. Wang, J. Zhang, S. Zhao, Z. Li, X. Zhang, J. Xie, J. Am. Chem. Soc. 2024, 146, 10963–10972.
- 37J. K. Lee, S. Banerjee, H. G. Nam, R. N. Zare, Quart. Rev. Biophys. 2015, 48, 437–444.
- 38H. Hao, I. Leven, T. Head-Gordon, Nat. Commun. 2022, 13, 280.
- 39A. R. Chowdhuri, B. K. Spoorthi, B. Mondal, P. Bose, S. Bose, T. Pradeep, Chem. Sci. 2021, 12, 6370–6377.
- 40J. K. Lee, D. Samanta, H. G. Nam, R. N. Zare, Nat. Commun. 2018, 9, 1562.
- 41Y.-H. Sung, C.-L. Wu, J.-H. Huang, D.-H. Tsai, Anal. Chem. 2023, 95, 4513–4520.
- 42E. Heath, O. W. Howarth, J. Chem. Soc., Dalton Trans. 1981, 1105–1110.
- 43O. W. Howarth, P. Kelly, L. Pettersson, J. Chem. Soc., Dalton Trans. 1990, 81–84.
- 44P. Klonowski, J. C. Goloboy, F. J. Uribe-Romo, F. Sun, L. Zhu, F. Gándara, C. Wills, R. J. Errington, O. M. Yaghi, W. G. Klemperer, Inorganic Chem 2014, 53, 13239–13246.
- 45M. A. Fedotov, R. I. Maksimovskaya, J. Struct. Chem. 2006, 47, 952–978.
- 46M. Samaniyan, M. Mirzaei, R. Khajavian, H. Eshtiagh-Hosseini, C. Streb, ACS Catal. 2019, 9, 10174–10191.
- 47Y. Zhang, Y. Li, H. Guo, Y. Guo, R. Song, Mat. Chem. Front. 2024, 8, 732–768.
- 48E. Rtibi, M. Abderrabba, S. Ayadi, B. Champagne, Inorganic Chem 2019, 58, 11210–11219.
- 49J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Chem. Soc. Rev. 2012, 41, 7464.
- 50H. Ravanbakhsh, S. Dianat, A. Hosseinian, RSC Adv. 2022, 12, 9210–9222.
- 51L. Geng, Y. Wang, Crystals 2021, 11, 375.
- 52A.-X. Yan, S. Yao, Y.-G. Li, Z.-M. Zhang, Y. Lu, W.-L. Chen, E.-B. Wang, Chem. – A Euro. J. 2014, 20, 6927–6933.
- 53C. Lu, Z. Tang, D. Wang, L. Chen, J. Zhao, Anal. Meth. 2024, 16, 5133–5145.
- 54D.-L. Long, L. Cronin, Chem. – A Euro. J. 2006, 12, 3698–3706.
- 55G. Murmu, S. Samajdar, S. Ghosh, K. Shakeela, S. Saha, Chemosphere 2024, 346, 140576.
- 56R. J. Errington, C. Lax, D. G. Richards, W. Clegg, K. A. Fraser, Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Eds.: M. T. Pope, A. Müller), Springer Netherlands, Dordrecht, The Netherlands, 1994, pp. 105–114.
10.1007/978-94-011-0920-8_8 Google Scholar
- 57W. G. Klemperer, K. A. Marek, Eur. J. Inorg. Chem. 2013, 2013, 1762–1771.
- 58J. Hastings, O. W. Howarth, J. Chem. Soc., Dalton Trans. 1992, 209–215.
- 59R. I. Maksimovskaya, K. G. Burtseva, Polyhedron 1985, 4, 1559–1562.
- 60W. G. Klemperer, Inorg. Synth. 1990, 27, 74–85.
- 61S. Saha, L. N. Zakharov, B. Captain, D. A. Keszler, J. Clust. Sci. 2021, 32, 693–702.
- 62H. Yang, S. Gao, J. Lü, B. Xu, J. Lin, R. Cao, Inorg. Chem. 2010, 49, 736–744.
- 63D. Shiels, M. Pascual-Borràs, P. G. Waddell, C. Wills, J.-M. Poblet, R. J. Errington, Chem. Commun. 2023, 59, 7919–7922.
- 64H. Nie, Z. Wei, L. Qiu, X. Chen, D. Holden, R. Cooks, Chem. Sci. 2020, 11, 2356–2361.
- 65G. Pena, J. Albalad, D. Maspoch, I. Imaz, Chem. Sci. 2025, 16, 5770–5775.
- 66A. Nandy, S. Mondal, D. Koner, S. Banerjee, J. Am. Chem. Soc. 2024, 146, 19050–19058.
- 67L. Vilà-Nadal, A. Rodríguez-Fortea, L.-K. Yan, E. F. Wilson, L. Cronin, J. M. Poblet, Angew. Chem., Int. Ed. 2009, 48, 5452–5456.