Dual Stimuli-Responsive [2]Rotaxanes with Tunable Vibration-Induced Emission and Switchable Circularly Polarized Luminescence
Wei-Tao Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorXue Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorPeicong Wu
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241 China
Search for more papers by this authorDr. Wei-Jian Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorDr. Yu Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorXiao-Qin Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorDr. Xu-Qing Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Dr. Jinquan Chen
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241 China
Search for more papers by this authorProf. Dr. Hai-Bo Yang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083 China
East China Normal University, Shanghai, 200062 China
Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorWei-Tao Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorXue Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorPeicong Wu
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241 China
Search for more papers by this authorDr. Wei-Jian Li
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorDr. Yu Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorXiao-Qin Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorDr. Xu-Qing Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorProf. Dr. Jinquan Chen
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241 China
Search for more papers by this authorProf. Dr. Hai-Bo Yang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083 China
East China Normal University, Shanghai, 200062 China
Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 China
Search for more papers by this authorGraphical Abstract
Abstract
Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to −0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202319502-sup-0001-misc_information.pdf14 MB | Supporting Information |
anie202319502-sup-0001-pR-5C[2]R.cif4.7 MB | Supporting Information |
anie202319502-sup-0001-pR-6C[2]R.cif4.7 MB | Supporting Information |
anie202319502-sup-0001-pS-5C[2]R.cif4.5 MB | Supporting Information |
anie202319502-sup-0001-pS-6C[2]R.cif4.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. F. Stoddart, Chem. Soc. Rev. 2009, 38, 1802–1820;
- 1bR. S. Forgan, J. P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 1cE. A. Neal, S. M. Goldup, Chem. Commun. 2014, 50, 5128–5142;
- 1dC. J. Bruns, J. F. Stoddart, John Wiley and Sons, Hoboken, 2016;
- 1eJ. E. M. Lewis, M. Galli, S. M. Goldup, Chem. Commun. 2017, 53, 298–312;
- 1fM. Denis, S. M. Goldup, Nat. Chem. Rev. 2017, 1, 0061;
- 1gH. Y. Zhou, Y. Han, C. F. Chen, Mater. Chem. Front. 2020, 4, 12–28;
- 1hD. Sluysmans, J. F. Stoddart, Trends Chem. 2019, 1, 185–197;
- 1iJ.-X. Liu, K. Chen, C. Redshaw, Chem. Soc. Rev. 2023, 52, 1428–1455.
- 2
- 2aS. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206;
- 2bL. Zhang, V. Marcos, D. A. Leigh, Proc. Natl. Acad. Sci. USA 2018, 115, 9397–9404;
- 2cQ. Wang, D. Chen, H. Tian, Sci. China Chem. 2018, 61, 1261–1273;
- 2dA. W. Heard, S. M. Goldup, ACS Cent. Sci. 2020, 6, 117–128;
- 2eW. Wang, H.-B. Yang, Sci. Bull. 2020, 65, 1964–1965;
- 2fQ. Cui, X. Zhang, Chin. J. Chem. 2023, 41, 2715–2729;
- 2gY. Yao, P. Zhang, D. Zhou, Z. Lai, S. Li, F. Huang, Z. Zhang, Chin. Chem. Lett. 2023, DOI: 10.1016/j.cclet.2023.108712;
- 2hE. Moulin, C. C. Carmona-Vargas, N. Giuseppone, Chem. Soc. Rev. 2023, DOI: 10.1039/D3CS00619K.
- 3
- 3aX. Ma, H. Tian, Chem. Soc. Rev. 2010, 39, 70–80;
- 3bX.-Q. Xu, X.-Q. Wang, W. Wang, Chin. Chem. Lett. 2023, 34, 107665;
- 3cA. H. G. David, J. F. Stoddart, Isr. J. Chem. 2021, 61, 608–621.
- 4
- 4aM. Denis, J. Pancholi, K. Jobe, M. Watkinson, S. M. Goldup, Angew. Chem. Int. Ed. 2018, 57, 5310–5314;
- 4bX. Ma, J. Zhang, J. Cao, X. Yao, T. Cao, Y. Gong, C. Zhao, H. Tian, Chem. Sci. 2016, 7, 4582–4588;
- 4cW. Liu, A. Johnson, B. D. Smith, J. Am. Chem. Soc. 2018, 140, 3361–3370;
- 4dE. Arunkumar, C. C. Forbes, B. C. Noll, B. D. Smith, J. Am. Chem. Soc. 2005, 127, 3288–3289;
- 4eM. E. Gallina, B. Baytekin, C. Schalley, P. Ceroni, Chem. Eur. J. 2012, 18, 1528–1535;
- 4fB. Delavaux-Nicot, H. B. Aziza, I. Nierengarten, T. M. N. Trinh, E. Meichsner, M. Chessé, M. Holler, R. Abidi, E. Maisonhaute, J.-F. Nierengarten, Chem. Eur. J. 2018, 24, 133–140;
- 4gJ. Pruchyathamkorn, W. J. Kendrick, A. T. Frawley, A. Mattioni, F. Caycedo-Soler, S. F. Huelga, M. B. Plenio, H. L. Anderson, Angew. Chem. Int. Ed. 2020, 59, 16455–16458;
- 4hM. Inouye, K. Hayashi, Y. Yonenaga, T. Itou, K. Fujimoto, T. Uchida, M. Iwamura, K. Nozaki, Angew. Chem. Int. Ed. 2014, 53, 14392–14396;
- 4iK. Hayashi, Y. Miyaoka, Y. Ohishi, T. Uchida, M. Iwamura, K. Nozaki, M. Inouye, Chem. Eur. J. 2018, 24, 14613–14616;
- 4jX. Song, X. Zhu, S. Qiu, W. Tian, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202208574;
- 4kA. H. G. David, R. Casares, J. M. Cuerva, A. G. Campaña, V. Blanco, J. Am. Chem. Soc. 2019, 141, 18064–18074.
- 5
- 5aP. L. Anelli, N. Spencer, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 5131–5133;
- 5bR. A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature 1994, 369, 133–137;
- 5cS. Chen, Y. Wang, T. Nie, C. Bao, C. Wang, T. Xu, Q. Lin, D.-H. Qu, X. Gong, Y. Yang, L. Zhu, H. Tian, J. Am. Chem. Soc. 2018, 140, 17992–17998;
- 5dK. Zhu, C. A. O'Keefe, V. N. Vukotic, R. W. Schurko, S. J. Loeb, Nat. Chem. 2015, 7, 514–519;
- 5eK. Zhu, G. Baggi, S. J. Loeb, Nat. Chem. 2018, 10, 625–630;
- 5fA. Li, Z. Tan, Y. Hu, Z. Lu, J. Yuan, X. Li, J. Xie, J. Zhang, K. Zhu, J. Am. Chem. Soc. 2022, 144, 2085–2089;
- 5gZ. Cao, D. Wu, M. Li, F. Yang, Z. Li, W. An, S. Jiang, X. Zheng, C. Niu, D. Qu, Chin. Chem. Lett. 2022, 33, 1533–1536.
- 6
- 6aZ. Zhang, Y.-S. Wu, K.-C. Tang, C.-L. Chen, J.-W. Ho, J. Su, H. Tian, P.-T. Chou, J. Am. Chem. Soc. 2015, 137, 8509–8520;
- 6bZ. Zhang, G. Sun, W. Chen, J. Su, H. Tian, Chem. Sci. 2020, 11, 7525–7537;
- 6cZ. Zhang, W. Song, J. Su, H. Tian, Adv. Funct. Mater. 2020, 30, 1902803;
- 6dZ. Zhang, X. Jin, X. Sun, J. Su, D.-H. Qu, Coord. Chem. Rev. 2022, 472, 214768;
- 6eS. Qiu, Z. Zhang, Z. Wang, D.-H. Qu, H. Tian, Precis. Chem. 2023, 1, 129–138;
- 6fF. Gu, Y. Li, T. Jiang, J. Su, X. Ma, CCS Chem. 2022, 4, 3014–3022.
- 7
- 7aL. Shi, W. Song, C. Lian, W. Chen, J. Mei, J. Su, H. Liu, H. Tian, Adv. Opt. Mater. 2018, 6, 1800190;
- 7bY. Zhang, Y. Li, H. Wang, Z. Zhang, Y. Feng, Q. Tian, N. Li, J. Mei, J. Su, H. Tian, ACS Appl. Mater. Interfaces 2019, 11, 39351–39358;
- 7cW. Song, W. Ye, L. Shi, J. Huang, Z. Zhang, J. Mei, J. Su, H. Tian, Mater. Horiz. 2020, 7, 615–623;
- 7dY. Su, H. Liu, X. Chen, Q. Wang, J. Su, Z. Zhang, ACS Appl. Polym. Mater. 2022, 4, 1636–1642;
- 7eY. Hu, Z. Huang, I. Willner, X. Ma, CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302904.
- 8
- 8aH. Zhou, J. Mei, Y.-A. Chen, C.-L. Chen, W. Chen, Z. Zhang, J. Su, P.-T. Chou, H. Tian, Small 2016, 12, 6542–6546;
- 8bW. Chen, C. Guo, Q. He, X. Chi, V. M. Lynch, Z. Zhang, J. Su, H. Tian, J. L. Sessler, J. Am. Chem. Soc. 2019, 141, 14798–14806;
- 8cZ. Zong, Q. Zhang, D.-H. Qu, CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302900.
- 9
- 9aQ. Gong, W. Qin, P. Xiao, X. Wu, L. Li, G. Zhang, R. Zhang, J. Sun, S. Q. Yao, W. Huang, Chem. Commun. 2020, 56, 58–61;
- 9bJ. Ramos-Soriano, S. J. Benitez-Benitez, A. P. Davis, M. C. Galan, Angew. Chem. Int. Ed. 2021, 60, 16880–16884;
- 9cW.-T. Dou, X. Wang, T. Liu, S. Zhao, J.-J. Liu, Y. Yan, J. Li, C.-Y. Zhang, A. C. Sedgwick, H. Tian, J. L. Sessler, D.-M. Zhou, X.-P. He, Chem 2022, 8, 1750–1761;
- 9dX. Chen, S. Yuan, M. Qiao, X. Jin, J. Chen, L. Guo, J. Su, D.-H. Qu, Z. Zhang, J. Am. Chem. Soc. 2023, 145, 26494–26503.
- 10
- 10aJ. Wang, X. Yao, Y. Liu, H. Zhou, W. Chen, G. Sun, J. Su, X. Ma, H. Tian, Adv. Opt. Mater. 2018, 6, 1800074;
- 10bG. Sun, J. Pan, Y. Wu, Y. Liu, W. Chen, Z. Zhang, J. Su, ACS Appl. Mater. Interfaces 2020, 12, 10875–10882;
- 10cS. Liu, J. Wang, F. Tang, N. Wang, L. Li, C. Yao, L. Li, ACS Appl. Mater. Interfaces 2020, 12, 55269–55277;
- 10dX. Chen, J. Chen, G. Sun, L. Guo, J. Su, Z. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 38629–38636;
- 10eZ.-T. Shi, Q. Wang, J. Yi, C. Zhao, S.-Y. Chen, H. Tian, D.-H. Qu, Angew. Chem. Int. Ed. 2022, 61, e202207405;
- 10fZ. Zong, Q. Zhang, S.-H. Qiu, Q. Wang, C. Zhao, C.-X. Zhao, H. Tian, D.-H. Qu, Angew. Chem. Int. Ed. 2022, 61, e202116414.
- 11
- 11aS. Yang, C.-X. Zhao, S. Crespi, X. Li, Q. Zhang, Z.-Y. Zhang, J. Mei, H. Tian, D.-H. Qu, Chem 2021, 7, 1544–1556;
- 11bC. Yu, X. Wang, C.-X. Zhao, S. Yang, J. Gan, Z. Wang, Z. Cao, D.-H. Qu, Chin. Chem. Lett. 2022, 33, 4904–4907.
- 12
- 12aW. Wang, L.-J. Chen, X.-Q. Wang, B. Sun, X. Li, Y. Zhang, J. Shi, Y. Yu, L. Zhang, M. Liu, H.-B. Yang, Proc. Natl. Acad. Sci. USA 2015, 112, 5597–5601;
- 12bX.-Q. Wang, W. Wang, W.-J. Li, L.-J. Chen, R. Yao, G.-Q. Yin, Y.-X. Wang, Y. Zhang, J. Huang, H. Tan, Y. Yu, X. Li, L. Xu, H.-B. Yang, Nat. Commun. 2018, 9, 3190;
- 12cX.-Q. Wang, W.-J. Li, W. Wang, J. Wen, Y. Zhang, H. Tan, H.-B. Yang, J. Am. Chem. Soc. 2019, 141, 13923–13930;
- 12dX.-Q. Wang, W. Wang, W.-J. Li, Y. Qin, G.-Q. Yin, W.-L. Jiang, X. Li, S. Wu, H.-B. Yang, Org. Chem. Front. 2019, 6, 1686–1691;
- 12eW.-J. Li, H. Jiang, X.-Q. Wang, D.-Y. Zhang, Y. Zhu, Y. Ke, W. Wang, H.-B. Yang, Mater. Today Chem. 2022, 24, 100874;
- 12fW.-J. Li, Z. Hu, L. Xu, X.-Q. Wang, W. Wang, G.-Q. Yin, D.-Y. Zhang, Z. Sun, X. Li, H. Sun, H.-B. Yang, J. Am. Chem. Soc. 2020, 142, 16748–16756;
- 12gW.-J. Li, X.-Q. Wang, W. Wang, Z. Hu, Y. Ke, H. Jiang, C. He, X. Wang, Y.-X. Hu, P.-P. Jia, P. Yin, J. Chen, H. Sun, Z. Sun, L. Xu, H.-B. Yang, Giant 2020, 2, 100020;
- 12hW.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke, R. Yao, J. Wen, G.-Q. Yin, B. Jiang, X. Li, P. Yin, H.-B. Yang, J. Am. Chem. Soc. 2020, 142, 8473–8482;
- 12iW.-J. Li, X.-Q. Wang, D.-Y. Zhang, Y.-X. Hu, W.-T. Xu, L. Xu, W. Wang, H.-B. Yang, Angew. Chem. Int. Ed. 2021, 60, 18761–18768;
- 12jW.-J. Li, W.-T. Xu, X.-Q. Wang, Y. Jiang, Y. Zhu, D.-Y. Zhang, X.-Q. Xu, L.-R. Hu, W. Wang, H.-B. Yang, J. Am. Chem. Soc. 2023, 145, 14498–14509;
- 12kX.-Q. Wang, W.-J. Li, W. Wang, H.-B. Yang, Acc. Chem. Res. 2021, 54, 4091–4106;
- 12lY. Zhu, H. Jiang, W. Wu, X.-Q. Xu, X.-Q. Wang, W.-J. Li, W.-T. Xu, G. Liu, Y. Ke, W. Wang, H.-B. Yang, Nat. Commun. 2023, 14, 5307.
- 13
- 13aW.-J. Li, Q. Gu, X.-Q. Wang, D.-Y. Zhang, Y.-T. Wang, X. He, W. Wang, H.-B. Yang, Angew. Chem. Int. Ed. 2021, 60, 9507;
- 13bY. Wang, J. Gong, X. Wang, W.-J. Li, X.-Q. Wang, X. He, W. Wang, H.-B. Yang, Angew. Chem. Int. Ed. 2022, e202210542.
- 14X. Jin, S. Guo, X. Wang, M. Cong, J. Chen, Z. Zhang, J. Su, D.-H. Qu, H. Tian, Angew. Chem. Int. Ed. 2023, 62, e202305572.
- 15J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum, J. Stat. Softw. 2012, 49, 1–22.
- 16
- 16aS. Fa, T. Kakuta, T.-A. Yamagishi, T. Ogoshi, Chem. Lett. 2019, 48, 1278–1287;
- 16bJ.-F. Chen, J.-D. Ding, T.-B. Wei, Chem. Commun. 2021, 57, 9029–9039;
- 16cC. Shi, H. Li, X. Shi, L. Zhao, H. Qiu, Chin. Chem. Lett. 2022, 33, 3613–3622;
- 16dT. Zhao, W. Wu, C. Yang, Chem. Commun. 2023, 59, 11469–11483;
- 16eK. Kato, S. Fa, T. Ogoshi, Angew. Chem. Int. Ed. 2023, e202308316;
- 16fK. Kato, S. Fa, S. Ohtani, T.-H. Shi, A. M. Brouwer, T. Ogoshi, Chem. Soc. Rev. 2022, 51, 3648–3687.
- 17Deposition numbers CCDC 2293130 (for pR-5C[2]R), 2293131 (for pS-5C[2]R), 2293134 (for pR-6C[2]R), and 2293135 (for pS-6C[2]R) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.