Kinetics Controlled Perovskite Crystallization for High Performance Solar Cells
Jinghao Ge
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
These authors contributed equally.
Search for more papers by this authorRan Chen
School of Materials Science and Engineering, Xi'an University of Science and Technology, No. 67, Xiaozhai East Road, Xi'an, Shaanxi, 710054 PR China
These authors contributed equally.
Search for more papers by this authorYabin Ma
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorYunfan Wang
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorYingjie Hu
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorLu Zhang
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
Search for more papers by this authorFengzhu Li
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorXiaokang Ma
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, No. 127, Laodong West Road, Xi'an, Shaanxi, 710072 PR China
Search for more papers by this authorSai-Wing Tsang
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Jiaxue You
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Alex K. Y. Jen
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Shengzhong Frank Liu
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457 Zhongshan Road, Shahekou District, Dalian, 116023 China
University of the Chinese Academy of Sciences, No. 80, Zhongguancun East Road, Beijing, 100039 China
Search for more papers by this authorJinghao Ge
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
These authors contributed equally.
Search for more papers by this authorRan Chen
School of Materials Science and Engineering, Xi'an University of Science and Technology, No. 67, Xiaozhai East Road, Xi'an, Shaanxi, 710054 PR China
These authors contributed equally.
Search for more papers by this authorYabin Ma
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorYunfan Wang
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorYingjie Hu
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorLu Zhang
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
Search for more papers by this authorFengzhu Li
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorXiaokang Ma
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, No. 127, Laodong West Road, Xi'an, Shaanxi, 710072 PR China
Search for more papers by this authorSai-Wing Tsang
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Jiaxue You
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Alex K. Y. Jen
Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Shengzhong Frank Liu
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119 China
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457 Zhongshan Road, Shahekou District, Dalian, 116023 China
University of the Chinese Academy of Sciences, No. 80, Zhongguancun East Road, Beijing, 100039 China
Search for more papers by this authorGraphical Abstract
Crystallization control of perovskite thin films is the key in commerciallization of perovskite solar cells. However, the fast crystallization of the thin film including nucleation, growth and Oswald ripening, is still a mystery though some efforts made. According to the theories of nucleation and Oswald ripening, we modified the perovskite surface energy and improved the grain solubility, and quantified the nucleation and ripening rate in experiments.
Abstract
The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9 mN/m to 36.1 mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37 Åm ⋅ s−1 to 4.61 Åm ⋅ s−1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800 h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data available on reasonable request from the corresponding author.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202319282-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng, D. Wang, Y. Li, F. Qi, Z. Zhang, Z. Yang, S.-H. Jang, F. R. Lin, S. W. Tsang, X.-K. Chen, A. K. Y. Jen, Nat. Photonics 2023, 17, 478–484.
- 2S. Sederberg, F. Kong, F. Hufnagel, C. Zhang, E. Karimi, P. B. Corkum, Nat. Photonics 2020, 14, 680–685.
- 3F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, Energy Environ. Sci. 2019, 12, 518–549.
- 4G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7.
- 5F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, M. Gra“tzel, J. Am. Chem. Soc. 2008, 131, 558–562.
- 6J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2021, 592, 381–385.
- 7J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2023, 616, 724–730.
- 8B. K. Shaw, A. R. Hughes, M. Ducamp, S. Moss, A. Debnath, A. F. Sapnik, M. F. Thorne, L. N. McHugh, A. Pugliese, D. S. Keeble, P. Chater, J. M. Bermudez-Garcia, X. Moya, S. K. Saha, D. A. Keen, F.-X. Coudert, F. Blanc, T. D. Bennett, Nat. Chem. 2021, 13, 778–785.
- 9Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos, W. Ke, Y. He, X. Ren, Z. Yang, F. Xiao, K. Zhao, M. Kanatzidis, S. Liu, Adv. Mater. 2021, 33.
- 10Z. Li, X. Sun, X. Zheng, B. Li, D. Gao, S. Zhang, X. Wu, S. Li, J. Gong, J. M. Luther, Z. a. Li, Z. Zhu, Science 2023, 382, 284–289.
- 11B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu, L. Zhang, J. Xi, G. Dong, M. Liu, S. Liu, Adv. Mater. 2022, 35.
- 12N. Rolston, A. D. Printz, J. M. Tracy, H. C. Weerasinghe, D. Vak, L. J. Haur, A. Priyadarshi, N. Mathews, D. J. Slotcavage, M. D. McGehee, R. E. Kalan, K. Zielinski, R. L. Grimm, H. Tsai, W. Nie, A. D. Mohite, S. Gholipour, M. Saliba, M. Grätzel, R. H. Dauskardt, Adv. Energy Mater. 2017, 8.
- 13N. Li, X. Niu, Q. Chen, H. Zhou, Chem. Soc. Rev. 2020, 49, 8235–8286.
- 14Y. Ma, X. Du, R. Chen, L. Zhang, Z. An, A. K. Y. Jen, J. You, S. Liu, Adv. Mater. 2023.
- 15S. Sánchez, L. Pfeifer, N. Vlachopoulos, A. Hagfeldt, Chem. Soc. Rev. 2021, 50, 7108–7131.
- 16Z. Zhou, S. Shaik, Z. Ouyang, F. Yan, D. Li, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 2019, 37.
- 17Y. Ma, J. Ge, A. K. Y. Jen, J. You, S. Liu, Adv. Opt. Mater. 2023.
- 18G. Nasti, M. H. Aldamasy, M. A. Flatken, P. Musto, P. Matczak, A. Dallmann, A. Hoell, A. Musiienko, H. Hempel, E. Aktas, D. Di Girolamo, J. Pascual, G. Li, M. Li, L. V. Mercaldo, P. D. Veneri, A. Abate, ACS Energy Lett. 2022, 7, 3197–3203.
- 19Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 2015, 137, 15907–15914.
- 20P. Zhai, L. Ren, Y. Zhang, Z. Xu, Y. Wu, K. Zhao, L. Zhang, S. Liu, Energy Environ. Sci. 2023, 16, 3014–3024.
- 21J. H. Clint, Curr. Opin. Colloid Interface Sci. 2001, 6 (2001), 28–33.
- 22W. Shao, H. Wang, F. Ye, C. Wang, C. Wang, H. Cui, K. Dong, Y. Ge, T. Wang, W. Ke, G. Fang, Energy Environ. Sci. 2023, 16, 252–264.
- 23J. Xue, R. Wang, K.-L. Wang, Z.-K. Wang, I. Yavuz, Y. Wang, Y. Yang, X. Gao, T. Huang, S. Nuryyeva, J.-W. Lee, Y. Duan, L.-S. Liao, R. Kaner, Y. Yang, J. Am. Chem. Soc. 2019, 141, 13948–13953.
- 24J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu, C. Jiang, X. Zhao, L. Ding, C. Yi, Nano Energy 2022, 95.
- 25Q. Tu, D. Kim, M. Shyikh, M. G. Kanatzidis, Matter 2021, 4, 2765–2809.
- 26Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu, X. Liu, S. Chen, M. Liu, Adv. Mater. 2022, 34.
- 27T. Yang, L. Gao, J. Lu, C. Ma, Y. Du, P. Wang, Z. Ding, S. Wang, P. Xu, D. Liu, H. Li, X. Chang, J. Fang, W. Tian, Y. Yang, S. F. Liu, K. Zhao, Nat. Commun. 2023, 14, 839.
- 28S. Pratap, F. Babbe, N. S. Barchi, Z. Yuan, T. Luong, Z. Haber, T. B. Song, J. L. Slack, C. V. Stan, N. Tamura, C. M. Sutter-Fella, P. Muller-Buschbaum, Nat. Commun. 2021, 12, 5624.
- 29P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle, C. M. Sutter-Fella, I. Yavuz, C. Yao, W. Fan, J. Xu, Y. Tian, D. Gu, K. Zhao, S. Tan, X. Zhang, L. Yao, P. J. Dyson, J. L. Slack, D. Yang, J. Xue, M. K. Nazeeruddin, Y. Yang, R. Wang, Nature 2023, 620, 323–327.
- 30L. Wagner, L. E. Mundt, G. Mathiazhagan, M. Mundus, M. C. Schubert, S. Mastroianni, U. Würfel, A. Hinsch, S. W. Glunz, Sci. Rep. 2017, 7.
- 31A. He, Y. Wang, P. Tang, Z. Zhang, Z. Zeng, Y. Zhang, X. Hao, L. Wu, S. K. So, S. W. Tsang, J. Zhang, Adv. Energy Mater. 2023.
- 32T. B. Song, Z. Yuan, M. Mori, F. Motiwala, G. Segev, E. Masquelier, C. V. Stan, J. L. Slack, N. Tamura, C. M. Sutter-Fella, Adv. Funct. Mater. 2019, 30.
- 33S. Wang, T. Yang, Y. Yang, Y. Du, W. Huang, L. Cheng, H. Li, P. Wang, Y. Wang, Y. Zhang, C. Ma, P. Liu, G. Zhao, Z. Ding, S. Liu, K. Zhao, Adv. Mater. 2023.
- 34S. Tan, T. Huang, I. Yavuz, R. Wang, M. H. Weber, Y. Zhao, M. Abdelsamie, M. E. Liao, H. C. Wang, K. Huynh, K. H. Wei, J. Xue, F. Babbe, M. S. Goorsky, J. W. Lee, C. M. Sutter-Fella, Y. Yang, J. Am. Chem. Soc. 2021, 143, 6781–6786.
- 35S. Mastroianni, F. D. Heinz, J. H. Im, W. Veurman, M. Padilla, M. C. Schubert, U. Würfel, M. Grätzel, N. G. Park, A. Hinsch, Nanoscale 2015, 7, 19653–19662.
- 36T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe, Y. Zhao, M. Abdelsamie, M. H. Weber, R. Wang, K. N. Houk, C. M. Sutter-Fella, Y. Yang, Science Advences 2021, 7, eabj1799.
- 37D.-H. Kang, S.-U. Lee, N.-G. Park, ACS Energy Lett. 2023, 8, 2122–2129.
- 38Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N. P. Padture, G. Cui, Chem. Mater. 2015, 27, 7149–7155.
- 39F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, L. Han, Energy Environ. Sci. 2017, 10, 1942–1949.
- 40M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179–2192.
- 41B. Lee, T. Hwang, S. Lee, B. Shin, B. Park, Sci. Rep. 2019, 9.
- 42N. Z. a. P. G. Chi Li, Mater. Chem. Front. 2023.
- 43-3802.
- 44C. V. Thompson, J. Appl. Phys. 1985, 58, 763–772.
- 45W. Wang, T. Ghosh, H. Yan, I. Erofeev, K. Zhang, K. P. Loh, U. Mirsaidov, J. Am. Chem. Soc. 2022, 144, 17848–17856.
- 46J.-F. Wang, L. Zhu, B.-G. Zhao, Y.-L. Zhao, J. Song, X.-Q. Gu, Y.-H. Qiang, Sci. Rep. 2017, 7.