Dendritic sp Carbon-Conjugated Benzothiadiazole-Based Polymers with Synergistic Multi-Active Groups for High-Performance Lithium Organic Batteries
Yingnan Cao
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorYi Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorDr. Chaofei Guo
College of Chemical and Material Engineering, Zhejiang A&F University, 666 Wusu Street, 311300 Hangzhou, Zhejiang, P. R. China
Search for more papers by this authorProf. Weiwei Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorProf. Yang Wu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorProf. Yi Xu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorDr. Tiancun Liu
Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, 312000 Shaoxing, Zhejiang, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yong Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorYingnan Cao
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorYi Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorDr. Chaofei Guo
College of Chemical and Material Engineering, Zhejiang A&F University, 666 Wusu Street, 311300 Hangzhou, Zhejiang, P. R. China
Search for more papers by this authorProf. Weiwei Sun
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorProf. Yang Wu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorProf. Yi Xu
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorDr. Tiancun Liu
Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, 312000 Shaoxing, Zhejiang, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yong Wang
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Green organic materials composed of C, H, O, and N elements are receiving more and more attention worldwide. However, the high solubility, poor electrical conductivity, and long activation time limit the development of organic materials in practice. Herein, two stable covalent organic materials with alkynyl linkage between benzene rings and benzothiadiazole groups with different amounts of fluorine atoms modification (defined as BOP-0F and BOP-2F), are designed for lithium-ion batteries. Both BOP-0F and BOP-2F can achieve superior reversible capacities of ≈719.8 and 713.5 mAh g−1 over 100 cycles on account of the redox activity of alkynyl (two-electron involved) and benzothiadiazole units (five-electron involved) in these organic materials. While BOP-2F electrodes exhibit much more stable cycling performance than BOP-0F electrodes, especially without pronounced capacity ascending during initial cycling. It can be assigned to the synergy effect of alkynyl linkage and fluorine atom modification in BOP-2F. The lithium storage and activation mechanism of alkynyl, benzothiadiazole, and fluorine groups have also been deeply probed by a series of material characterizations and theoretical simulations. This work could be noteworthy in providing novel tactics for the molecular design and investigation of high-efficiency organic electrodes for energy storage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202316208-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Q. Zhao, K. Yan, J. Q. Zhang, B. Sun, G. X. Wang, Angew. Chem. Int. Ed. 2021, 60, 2208–2220;
- 1bW. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 4440–4457;
- 1cL. M. Morgan, M. M. Islam, H. Yang, K. O′Regan, A. N. Patel, A. Ghosh, E. Kendrick, M. Marinescu, G. J. Offer, B. J. Morgan, M. S. Islam, J. Edge, A. Walsh, ACS Energy Lett. 2022, 7, 108–122;
- 1dY. Xia, J. M. Zheng, C. M. Wang, M. Gu, Nano Energy 2018, 49, 434–452;
- 1eM. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski, J. Janek, Angew. Chem. Int. Ed. 2019, 58, 10434–10458;
- 1fM. B. Zheng, H. Tang, L. L. Li, Q. Hu, L. Zhang, H. G. Xue, H. Pang, Adv. Sci. 2018, 5, 1700592.
- 2
- 2aY. Y. Liu, Y. Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540–550;
- 2bG. Assat, J. M. Tarascon, Nat. Energy 2018, 3, 373–386;
- 2cS. Q. Li, K. Wang, G. F. Zhang, S. N. Li, Y. A. Xu, X. D. Zhang, X. Zhang, S. H. Zheng, X. Z. Sun, Y. W. Ma, Adv. Funct. Mater. 2022, 32, 2200796.
- 3
- 3aD. Y. Zhu, G. Y. Xu, M. Barnes, Y. L. Li, C. P. Tseng, Z. Q. Zhang, J. J. Zhang, Y. F. Zhu, S. Y. Khalil, M. M. Rahman, R. Verduzco, P. M. Ajayan, Adv. Funct. Mater. 2021, 31, 2100505;
- 3bK. Amin, N. Ashraf, L. J. Mao, C. F. J. Faul, Z. X. Wei, Nano Energy 2021, 85, 105958;
- 3cT. Sun, J. Xie, W. Guo, D. S. Li, Q. C. Zhang, Adv. Energy Mater. 2020, 10, 1904199;
- 3dL. M. Zhou, S. Jo, M. Park, L. Fang, K. Zhang, Y. P. Fan, Z. M. Hao, Y. M. Kang, Adv. Energy Mater. 2021, 11, 2003054.
- 4
- 4aQ. J. Deng, Z. B. Luo, R. Yang, J. Z. Li, ACS Sustainable Chem. Eng. 2020, 8, 15445–15465;
- 4bM. E. Bhosale, S. Chae, J. M. Kim, J. Y. Choi, J. Mater. Chem. A 2018, 6, 19885–19911;
- 4cM. Miroshnikov, K. P. Divya, G. Babu, A. Meiyazhagan, L. M. R. Arava, P. M. Ajayan, G. John, J. Mater. Chem. A 2016, 4, 12370–12386.
- 5
- 5aY. Yusran, Q. R. Fang, V. Valtchev, Adv. Mater. 2020, 32, 2002038;
- 5bY. Cao, M. D. Wang, H. J. Wang, C. Y. Han, F. S. Pan, J. Sun, Adv. Energy Mater. 2022, 12, 2200057;
- 5cG. F. Zhao, Y. J. Sun, Y. X. Yang, C. H. Zhang, Q. An, H. Guo, EcoMat 2022, 4, e12221.
- 6J. Li, X. C. Jing, Q. Q. Li, S. W. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565–3604.
- 7
- 7aS. Haldar, K. Roy, R. Kushwaha, S. Ogale, R. Vaidhyanathan, Adv. Energy Mater. 2019, 9, 1902428;
- 7bW. Liu, C. Wang, L. Zhang, H. Pan, W. Liu, J. Chen, D. Yang, Y. Xiang, K. Wang, J. Jiang, X. Yao, J. Mater. Chem. A 2019, 7, 3112–3119;
- 7cS. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258–4261;
- 7dY. Z. Zhu, X. F. Chen, Y. Q. Cao, W. C. Peng, Y. Li, G. L. Zhang, F. B. Zhang, X. B. Fan, Chem. Commun. 2019, 55, 1434–1437;
- 7eZ. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Adv. Energy Mater. 2019, 9, 1801010;
- 7fZ. Wang, Y. Li, P. Liu, Q. Qi, F. Zhang, G. Lu, X. Zhao, X. Huang, Nanoscale 2019, 11, 5330–5335;
- 7gX. Chen, Y. Li, L. Wang, Y. Xu, A. Nie, Q. Li, F. Wu, W. Sun, X. Zhang, R. Vajtai, P. M. Ajayan, L. Chen, Y. Wang, Adv. Mater. 2019, 31, 1901640.
- 8
- 8aC. Y. Yu, H. Li, Y. J. Wang, J. Q. Suo, X. Y. Guan, R. Wang, V. Valtchev, Y. S. Yan, S. L. Qiu, Q. R. Fang, Angew. Chem. Int. Ed. 2022, 61, e202117101;
- 8bC. H. Ding, M. Breunig, J. Timm, R. Marschall, J. Senker, S. Agarwal, Adv. Funct. Mater. 2021, 31, 2106507.
- 9
- 9aK. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Angew. Chem. Int. Ed. 2013, 52, 1432–1436;
- 9bJ. Sedlácek, J. Vohlídal, N. Patev, M. Pacovská, S. Cabioch, O. Lavastre, P. H. Dixneuf, H. Balcar, P. Matejka, Macromol. Chem. Phys. 1999, 200, 972–976.
10.1002/(SICI)1521-3935(19990501)200:5<972::AID-MACP972>3.0.CO;2-H CAS Web of Science® Google Scholar
- 10
- 10aH. Wang, Y. J. Chen, H. M. Yu, W. Liu, G. C. Kuang, L. Mei, Z. B. Wu, W. F. Wei, X. B. Ji, B. H. Qu, L. B. Chen, Adv. Funct. Mater. 2022, 32, 2205600;
- 10bH. Zhang, W. Sun, X. Chen, Y. Wang, ACS Nano 2019, 13, 14252–14261;
- 10cJ. J. He, N. Wang, Z. Yang, X. Y. Shen, K. Wang, C. S. Huang, Y. P. Yi, Z. Y. Tu, Y. L. Li, Energy Environ. Sci. 2018, 11, 2893–2903.
- 11
- 11aM. Murakami, K. Matsumoto, R. Hagiwara, Y. Matsuo, Carbon 2018, 138, 179–187;
- 11bY. G. Xiang, X. P. Wang, L. Rao, P. Wang, D. K. Huang, X. Ding, X. H. Zhang, S. Y. Wang, H. Chen, Y. F. Zhu, ACS Energy Lett. 2018, 3, 2544–2549;
- 11cS. K. Padamata, A. Yasinskiy, S. Stopic, B. Friedrich, J. Fluorine Chem. 2022, 255, 109964.
- 12
- 12aJ.-T. Li, S.-R. Chen, F.-S. Ke, G.-Z. Wei, L. Huang, S.-G. Sun, J. Electroanal. Chem. 2010, 649, 171–176;
- 12bY. Wang, P. B. Balbuena, Int. J. Quantum Chem. 2005, 102, 724–733.
- 13Y. Cao, H. Fang, C. Guo, W. Sun, Y. Xu, Y. Wu, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202302143.
- 14
- 14aX. Y. Yang, L. Gong, X. L. Liu, P. P. Zhang, B. W. Li, D. D. Qi, K. Wang, F. He, J. Z. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202207043;
- 14bQ. Geng, Z. Xu, J. Wang, C. Song, Y. Wu, Y. Wang, Chem. Eng. J. 2023, 469, 143941.
- 15F. Xu, S. H. Yang, G. S. Jiang, Q. Ye, B. Q. Wei, H. Q. Wang, ACS Appl. Mater. Interfaces 2017, 9, 37731–37738.
- 16
- 16aY. Cao, W. Sun, C. Guo, L. Zheng, M. Yao, Y. Wang, ACS Nano 2022, 16, 9830–9842;
- 16bP. Ge, S. J. Li, L. Q. Xu, K. Y. Zou, X. Gao, X. Y. Cao, G. Q. Zou, H. S. Hou, X. B. Ji, Adv. Energy Mater. 2019, 9, 1803035.
- 17M. Holzapfel, A. Martinent, F. Alloin, B. Le Gorrec, R. Yazami, C. Montella, J. Electroanal. Chem. 2003, 546, 41–50.
- 18
- 18aW. W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. G. Hu, W. F. Wei, G. Q. Zou, H. S. Hou, X. B. Ji, Nano Energy 2019, 65, 104038;
- 18bD. P. Li, X. H. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Q. Peng, P. C. Si, J. Lou, J. K. Feng, L. J. Ci, Adv. Energy Mater. 2018, 8, 1802386.
- 19
- 19aP. Ge, S. J. Li, H. L. Shuai, W. Xu, Y. Tian, L. Yang, G. Q. Zou, H. S. Hou, X. B. Ji, Nano Energy 2018, 54, 26–38;
- 19bC. F. Guo, B. Han, W. W. Sun, Y. N. Cao, Y. F. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202213276.
- 20
- 20aA. Q. Wang, R. Tan, C. Breakwell, X. C. Wei, Z. Y. Fan, C. C. Ye, R. Malpass-Evans, T. Liu, M. A. Zwijnenburg, K. E. Jelfs, N. B. McKeown, J. Chen, Q. L. Song, J. Am. Chem. Soc. 2022, 144, 17198–17208;
- 20bF. Ye, Q. Liu, H. L. Dong, K. L. Guan, Z. Y. Chen, N. Ju, L. F. Hu, Angew. Chem. Int. Ed. 2022, 61, e202214244.