Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion
Yaxing Zhang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorChunyan Wang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorMengyuan Yin
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorHanxue Liang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorQi Gao
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorShanjin Hu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weiwei Guo
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorYaxing Zhang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorChunyan Wang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorMengyuan Yin
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorHanxue Liang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorQi Gao
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorShanjin Hu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weiwei Guo
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071 Tianjin, P. R. China
Search for more papers by this authorGraphical Abstract
Surface-initiated polymerization reaction of gallium-based liquid metal nanoparticles under sonication allows the construction of smart core/shell microgels. Multifunctional DNA microgels with tunable properties were prepared by introducing different vinyl monomers and functional DNA structures and controlling the polymerization process. The photothermal effect of LM NPs also contributed to the NIR-driven motion of these smart microgels.
Abstract
Due to their sequence-directed functions and excellent biocompatibility, smart DNA microgels have attracted considerable research interest, and the combination of DNA microgels with functional nanostructures can further expand their applications in biosensing and biomedicine. Gallium-based liquid metals (LMs) exhibiting both fluidic and metallic properties hold great promise for the development of smart soft materials; in particular, LM particles upon sonication can mediate radical-initiated polymerization reactions, thus allowing the combination of LMs and polymeric matrix to construct “soft–soft” materials. Herein, by forming active surfaces under sonication, LM nanoparticles (LM NPs) initiated localized radical polymerization reactions allow the combination of functional DNA units and different polymeric backbones to yield multifunctional core/shell microgels. The localized polymerization reaction allows fine control of the microgel compositions, and smart DNA microgels with tunable catalytic activities can be constructed. Moreover, due to the excellent photothermal effect of LM NPs, the resulting temperature gradient between microgels and surrounding solution upon NIR light irradiation can drive the oriented locomotion of the microgels, and remote control of the activity of these smart microgels can be achieved. These microgels may hold promise for various applications, such as the development of in vivo and in vitro biosensing and drug delivery systems.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202311678-sup-0001-misc_information.pdf455.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. R. Saunders, B. Vincent, Adv. Colloid Interface Sci. 1999, 80, 1–25;
- 1bR. Pelton, Adv. Colloid Interface Sci. 2000, 85, 1–33;
- 1cX. Zhang, S. Malhotra, M. Molina, R. Haag, Chem. Soc. Rev. 2015, 44, 1948–1973;
- 1dF. A. Plamper, W. Richtering, Acc. Chem. Res. 2017, 50, 131–140.
- 2
- 2aJ. K. Oh, R. Drumright, D. J. Siegwart, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 448–477;
- 2bJ. K. Oh, D. I. Lee, J. M. Park, Prog. Polym. Sci. 2009, 34, 1261–1282;
- 2cM. Motornov, Y. Roiter, I. Tokarev, S. Minko, Prog. Polym. Sci. 2010, 35, 174–211;
- 2dG. Agrawal, R. Agrawal, Small 2018, 14, 1801724;
- 2eW. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, D. A. Weitz, Chem. Soc. Rev. 2018, 47, 5646–5683;
- 2fX. Li, H. Sun, H. Li, C. Hu, Y. Luo, X. Shi, A. Pich, Adv. Funct. Mater. 2021, 31, 2100227;
- 2gK. O. Rojek, M. Cwiklinska, J. Kuczak, J. Guzowski, Chem. Rev. 2022, 122, 16839–16909.
- 3
- 3aD. Yang, M. R. Hartman, T. L. Derrien, S. Hamada, D. An, K. G. Yancey, R. Cheng, M. Ma, D. Luo, Acc. Chem. Res. 2014, 47, 1902–1911;
- 3bY. Li, D. Maciel, J. Rodrigues, X. Shi, H. Tomas, Chem. Rev. 2015, 115, 8564–8608;
- 3cF. Li, D. Lyu, S. Liu, W. Guo, Adv. Mater. 2020, 32, 1806538;
- 3dC. Yao, J. Ou, J. Tang, D. Yang, Acc. Chem. Res. 2022, 55, 2043–2054;
- 3eC. Wang, M. P. O′Hagan, Z. Li, J. Zhang, X. Ma, H. Tian, I. Willner, Chem. Soc. Rev. 2022, 51, 720–760;
- 3fJ. Wang, Z. Li, I. Willner, Angew. Chem. Int. Ed. 2023, 62, e202215332.
- 4
- 4aK. McAllister, P. Sazani, M. Adam, M. J. Cho, M. Rubinstein, R. J. Samulski, J. M. DeSimone, J. Am. Chem. Soc. 2002, 124, 15198–15207;
- 4bG. Zhu, R. Hu, Z. Zhao, Z. Chen, X. Zhang, W. Tan, J. Am. Chem. Soc. 2013, 135, 16438–16445;
- 4cR. Hu, X. Zhang, Z. Zhao, G. Zhu, T. Chen, T. Fu, W. Tan, Angew. Chem. Int. Ed. 2014, 53, 5821–5826;
- 4dJ. Li, C. Zheng, S. Cansiz, C. Wu, J. Xu, C. Cui, Y. Liu, W. Hou, Y. Wang, L. Zhang, I. T. Teng, H. H. Yang, W. Tan, J. Am. Chem. Soc. 2015, 137, 1412–1415;
- 4eF. Causa, A. Aliberti, A. M. Cusano, E. Battista, P. A. Netti, J. Am. Chem. Soc. 2015, 137, 1758–1761.
- 5
- 5aH. Mok, T. G. Park, Bioconjugate Chem. 2006, 17, 1369–1372;
- 5bL. Zhou, M. Morel, S. Rudiuk, D. Baigl, Small 2017, 13, 1700706.
- 6
- 6aJ. S. Kahn, R. C. Ruiz, S. Sureka, S. Peng, T. L. Derrien, D. An, D. Luo, Biomacromolecules 2016, 17, 2019–2026;
- 6bY. Wang, M. Yan, L. Xu, W. Zhao, X. Wang, S. Dong, J. Hao, J. Mater. Chem. B 2016, 4, 5446–5454.
- 7
- 7aF. Li, C. Wang, W. Guo, Adv. Funct. Mater. 2018, 28, 1705876;
- 7bR. Pandey, Y. Lu, E. Osman, S. Saxena, Z. Zhang, S. Qian, A. Pollinzi, M. Smieja, Y. Li, L. Soleymani, T. Hoare, ACS Sens. 2022, 7, 985–994;
- 7cX. Xu, P. P. He, X. Du, W. Guo, Adv. Sustainable Syst. 2022, 6, 2100265.
- 8
- 8aT. Miyata, N. Asami, T. Uragami, Nature 1999, 399, 766–769;
- 8bJ. Kim, N. Singh, L. A. Lyon, Angew. Chem. Int. Ed. 2006, 45, 1446–1449;
- 8cT. Miyata, M. Jige, T. Nakaminami, T. Uragami, Proc. Natl. Acad. Sci. USA 2006, 103, 1190–1193;
- 8dB. Jia, Y. Gao, Z. Ouyang, S. Shen, M. Shen, X. Shi, J. Mater. Chem. B 2023, 11, 4808–4818.
- 9
- 9aW. Sun, T. Jiang, Y. Lu, M. Reiff, R. Mo, Z. Gu, J. Am. Chem. Soc. 2014, 136, 14722–14725;
- 9bL. Mei, G. Zhu, L. Qiu, C. Wu, H. Chen, H. Liang, S. Cansiz, Y. Lv, X. Zhang, W. Tan, Nano Res. 2015, 8, 3447–3460;
- 9cY. Lv, R. Hu, G. Zhu, X. Zhang, L. Mei, Q. Liu, L. Qiu, C. Wu, W. Tan, Nat. Protoc. 2015, 10, 1508–1524;
- 9dW. Zhang, C. H. Tung, Macromol. Rapid Commun. 2017, 38, 1700366;
- 9eY. Ma, H. Liu, Q. Mou, D. Yan, X. Zhu, C. Zhang, Nanoscale 2018, 10, 8367–8371;
- 9fF. Ding, Q. Mou, Y. Ma, G. Pan, Y. Guo, G. Tong, C. H. J. Choi, X. Zhu, C. Zhang, Angew. Chem. Int. Ed. 2018, 57, 3064–3068;
- 9gL. Zhang, R. Abdullah, X. Hu, H. Bai, H. Fan, L. He, H. Liang, J. Zou, Y. Liu, Y. Sun, X. Zhang, W. Tan, J. Am. Chem. Soc. 2019, 141, 4282–4290.
- 10
- 10aJ. Fu, H. Yan, Nat. Biotechnol. 2012, 30, 407–408;
- 10bS. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G. J. Anderson, J. Y. Han, Y. Chang, Y. Liu, C. Zhang, L. Chen, G. Zhou, G. Nie, H. Yan, B. Ding, Y. Zhao, Nat. Biotechnol. 2018, 36, 258–264;
- 10cT. Patino, A. Porchetta, A. Jannasch, A. Llado, T. Stumpp, E. Schaffer, F. Ricci, S. Sanchez, Nano Lett. 2019, 19, 3440–3447;
- 10dY. Ye, F. Tong, S. Wang, J. Jiang, J. Gao, L. Liu, K. Liu, F. Wang, Z. Wang, J. Ou, B. Chen, D. A. Wilson, Y. Tu, F. Peng, Nano Lett. 2021, 21, 8086–8094;
- 10eM. Urso, M. Pumera, Adv. Funct. Mater. 2022, 32, 2200711.
- 11
- 11aJ. Zhang, Y. Yao, L. Sheng, J. Liu, Adv. Mater. 2015, 27, 2648–2655;
- 11bA. Zavabeti, J. Z. Ou, B. J. Carey, N. Syed, R. Orrell-Trigg, E. L. H. Mayes, C. Xu, O. Kavehei, A. P. O′Mullane, R. B. Kaner, K. Kalantar-zadeh, T. Daeneke, Science 2017, 358, 332–335;
- 11cM. D. Dickey, Adv. Mater. 2017, 29, 1606425;
- 11dJ. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, Chem. Soc. Rev. 2018, 47, 2518–2533;
- 11eT. Gan, W. Shang, S. Handschuh-Wang, X. Zhou, Small 2019, 15, 1804838;
- 11fC. Xu, B. Ma, S. Yuan, C. Zhao, H. Liu, Adv. Electron. Mater. 2020, 6, 1900721.
- 12Y. Lu, Q. Hu, Y. Lin, D. B. Pacardo, C. Wang, W. Sun, F. S. Ligler, M. D. Dickey, Z. Gu, Nat. Commun. 2015, 6, 10066.
- 13
- 13aJ. W. Boley, E. L. White, R. K. Kramer, Adv. Mater. 2015, 27, 2355–2360;
- 13bC. Pan, E. J. Markvicka, M. H. Malakooti, J. Yan, L. Hu, K. Matyjaszewski, C. Majidi, Adv. Mater. 2019, 31, 1900663.
- 14N. Kazem, T. Hellebrekers, C. Majidi, Adv. Mater. 2017, 29, 1605985.
- 15M. H. Malakooti, N. Kazem, J. J. Yan, C. F. Pan, E. J. Markvicka, K. Matyjaszewski, C. Majidi, Adv. Funct. Mater. 2019, 29, 1906098.
- 16
- 16aYamaguchi, Y. Mashima, T. Iyoda, Angew. Chem. Int. Ed. 2015, 54, 12809–12813;
- 16bY. Liu, W. Zhang, H. Wang, Mater. Horiz. 2021, 8, 56–77;
- 16cH. Song, T. Kim, S. Kang, H. Jin, K. Lee, H. J. Yoon, Small 2020, 16, 1903391.
- 17
- 17aR. C. Gough, J. H. Dang, M. R. Moorefield, G. B. Zhang, L. H. Hihara, W. A. Shiroma, A. T. Ohta, ACS Appl. Mater. Interfaces 2016, 8, 6–10;
- 17bT. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. de Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, K. Kalantar-Zadeh, Chem. Soc. Rev. 2018, 47, 4073–4111;
- 17cD. Esrafilzadeh, A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B. J. Carey, R. Brkljača, A. P. O'Mullane, M. D. Dickey, D. L. Officer, D. R. MacFarlane, T. Daeneke, K. Kalantar-Zadeh, Nat. Commun. 2019, 10, 865;
- 17dS.-Y. Tang, R. Qiao, Acc. Mater. Res. 2021, 2, 966–978.
- 18
- 18aS. A. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu, E. Miyako, Nat. Commun. 2017, 8, 15432;
- 18bX. Li, M. Li, L. Zong, X. Wu, J. You, P. Du, C. Li, Adv. Funct. Mater. 2018, 28, 1804197;
- 18cJ. Yan, M. H. Malakooti, Z. Lu, Z. Wang, N. Kazem, C. Pan, M. Bockstaller, C. Majidi, K. Matyjaszewski, Nat. Nanotechnol. 2019, 14, 684–690;
- 18dX. Huang, J. Hu, Y. Li, F. Xin, R. Qiao, T. P. Davis, Biomacromolecules 2019, 20, 4243–4257.
- 19
- 19aJ. Ma, Y. Lin, Y.-W. Kim, Y. Ko, J. Kim, K. H. Oh, J.-Y. Sun, C. B. Gorman, M. A. Voinov, A. I. Smirnov, J. Genzer, M. D. Dickey, ACS Macro Lett. 2019, 8, 1522–1527;
- 19bT. Gan, S. Handschuh-Wang, W. Shang, J. Shen, L. Zhu, Q. Xiao, S. Hu, X. Zhou, Macromol. Rapid Commun. 2019, 40, 1900537;
- 19cJ. Xu, Z. Wang, J. You, X. Li, M. Li, X. Wu, C. Li, Chem. Eng. J. 2020, 392, 123788;
- 19dY.-N. Zhou, J.-J. Li, Y.-Y. Wu, Z.-H. Luo, Chem. Rev. 2020, 120, 2950–3048.
- 20
- 20aX. Li, M. Li, Q. Shou, L. Zhou, A. Ge, D. Pei, C. Li, Adv. Mater. 2020, 32, 2003553;
- 20bY. Lin, J. Genzer, M. D. Dickey, Adv. Sci. 2020, 7, 2000192;
- 20cB. Yi, L. Ai, C. Hou, D. Lv, C. Cao, X. Yao, ACS Appl. Mater. Interfaces 2022, 14, 29315–29323;
- 20dF.-M. Allioux, M. B. Ghasemian, W. Xie, A. P. O'Mullane, T. Daeneke, M. D. Dickey, K. Kalantar-Zadeh, Nanoscale Horiz. 2022, 7, 141–167.
- 21Z. Wu, R. Wu, X. Li, X. Wang, X. Tang, K. Tan, M. Wan, C. Mao, X. Xu, H. Jiang, J. Li, M. Zhou, D. Shi, Small 2022, 18, 2104120.
- 22
- 22aC. Liu, J. Zhao, F. Tian, L. Cai, W. Zhang, Q. Feng, J. Chang, F. Wan, Y. Yang, B. Dai, Y. Cong, B. Ding, J. Sun, W. Tan, Nat. Biomed. Eng. 2019, 3, 183–193;
- 22bJ. Deng, F. Tian, C. Liu, Y. Liu, S. Zhao, T. Fu, J. Sun, W. Tan, J. Am. Chem. Soc. 2021, 143, 7261–7266.