Tweaking Photo CO2 Reduction by Altering Lewis Acidic Sites in Metalated-Porous Organic Polymer for Adjustable H2/CO Ratio in Syngas Production
Ratul Paul
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
These authors contributed equally to this work.
Search for more papers by this authorRisov Das
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
These authors contributed equally to this work.
Search for more papers by this authorNitumani Das
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSubhajit Chakraborty
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
Search for more papers by this authorChih-Wen Pao
National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076 Taiwan
Search for more papers by this authorDr. Quang Thang Trinh
Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111 Australia
Search for more papers by this authorCorresponding Author
Dr. G. T. Kasun Kalhara Gunasooriya
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 USA
Search for more papers by this authorCorresponding Author
Dr. John Mondal
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Prof. Sebastian C. Peter
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
Search for more papers by this authorRatul Paul
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
These authors contributed equally to this work.
Search for more papers by this authorRisov Das
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
These authors contributed equally to this work.
Search for more papers by this authorNitumani Das
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSubhajit Chakraborty
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
Search for more papers by this authorChih-Wen Pao
National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076 Taiwan
Search for more papers by this authorDr. Quang Thang Trinh
Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111 Australia
Search for more papers by this authorCorresponding Author
Dr. G. T. Kasun Kalhara Gunasooriya
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 USA
Search for more papers by this authorCorresponding Author
Dr. John Mondal
Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Prof. Sebastian C. Peter
New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 India
Search for more papers by this authorGraphical Abstract
Zn and Co based POP with different Lewis acidity has been developed for controlling water splitting and CO2 reduction under sunlight. Low-cost option of syngas production with adjustable H2/CO ratio was demonstrated obtained by skipping the use of any sacrificial electron donors (SEDs), cocatalysts, or photo-sensitizers.
Abstract
Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2) production from gaseous CO2. The variable H2/CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g−1 h−1) and H2 (434.7 μmol g−1 h−1) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3-TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure–activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202311304-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Goud, S. R. Churipard, D. Bagchi, A. K. Singh, M. Riyaz, C. P. Vinod, S. C. Peter, ACS Catal. 2022, 12, 11118–11128.
- 2T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637–638.
- 3
- 3aV. P. Santos, T. A. Wezendonk, J. J. D. Jaén, A. I. Dugulan, M. A. Nasalevich, H.-U. Islam, A. Chojecki, S. Sartipi, X. Sun, A. A. Hakeem, A. C. J. Koeken, M. Ruitenbeek, T. Davidian, G. R. Meima, G. Sankar, F. Kapteijn, M. Makkee, J. Gascon, Nat. Commun. 2015, 6, 6451;
- 3bH. Chen, Y. Xiong, J. Li, J. Abed, D. Wang, A. Pedrazo-Tardajos, Y. Cao, Y. Zhang, Y. Wang, M. Shakouri, Q. Xiao, Y. Hu, S. Bals, E. H. Sargent, C.-Y. Su, Z. Yang, Nat. Commun. 2023, 14, 1719.
- 4I. Wender, Fuel Process. Technol. 1996, 48, 189–297.
- 5Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, W. Pan, Energy Fuels 2008, 22, 1720–1730.
- 6
- 6aB. Su, M. Zheng, W. Lin, X. F. Lu, D. Luan, S. Wang, X. W. Lou, Adv. Energy Mater. 2023, 13, 2203290;
- 6bG. Liu, P. R. Narangari, Q. T. Trinh, W. Tu, M. Kraft, H. H. Tan, C. Jagadish, T. S. Choksi, J. W. Ager, S. Karuturi, R. Xu, ACS Catal. 2021, 11, 11416–11428.
- 7
- 7aT.-X. Wang, H.-P. Liang, D. A. Anito, X. Ding, B.-H. Han, J. Mater. Chem. A 2020, 8, 7003–7034;
- 7bR. Chen, Y. Wang, Y. Ma, A. Mal, X.-Y. Gao, L. Gao, L. Qiao, X.-B. Li, L.-Z. Wu, C. Wang, Nat. Commun. 2021, 12, 1354;
- 7cW. Wang, Y. Xi, C. Yang, J. Byun, J. Cheng, S. Wang, X. Wang, ChemCatChem 2022, 14, e202101872.
- 8H. Shen, T. Peppel, J. Strunk, Z. Sun, Solar RRL 2020, 4, 1900546.
- 9
- 9aJ. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 2015, 115, 12888–12935;
- 9bS. Wang, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 2308–2320;
- 9cR. Das, R. Paul, A. Parui, A. Shrotri, C. Atzori, K. A. Lomachenko, A. K. Singh, J. Mondal, S. C. Peter, J. Am. Chem. Soc. 2023, 145, 422–435.
- 10
- 10aT. Banerjee, F. Podjaski, J. Kröger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 2021, 6, 168–190;
- 10bJ. Chen, X. Tao, L. Tao, H. Li, C. Li, X. Wang, C. Li, R. Li, Q. Yang, Appl. Catal. B 2019, 241, 461–470.
- 11
- 11aL. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109;
- 11bS. Yan, X. Guan, H. Li, D. Li, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q. Fang, J. Am. Chem. Soc. 2019, 141, 2920–2924;
- 11cG. Yuan, Y. Lei, X. Meng, B. Ge, Y. Ye, X. Song, Z. Liang, Inorg. Chem. Front. 2022, 9, 1208–1216;
- 11dJ. Li, Y. Han, H. Lin, N. Wu, Q. Li, J. Jiang, J. Zhu, ACS Appl. Mater. Interfaces 2020, 12, 609–618.
- 12J. Ma, X. Li, Y. Li, G. Jiao, H. Su, D. Xiao, S. Zhai, R. Sun, Adv. Powder Mater. 2022, 1, 100058.
- 13
- 13aY.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 2020, 142, 16723–16731;
- 13bH.-J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang, Y.-H. Kan, J. Liu, Y. Chen, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2020, 11, 497.
- 14A. Modak, J. Mondal, V. K. Aswal, A. Bhaumik, J. Mater. Chem. 2010, 20, 8099–8106.
- 15
- 15aS. Bhunia, R. A. Molla, V. Kumari, S. M. Islam, A. Bhaumik, Chem. Commun. 2015, 51, 15732–15735;
- 15bL.-H. Li, X.-L. Feng, X.-H. Cui, Y.-X. Ma, S.-Y. Ding, W. Wang, J. Am. Chem. Soc. 2017, 139, 6042–6045.
- 16N. Das, R. Paul, S. Biswas, R. Das, R. Chatterjee, A. Bhaumik, S. C. Peter, B. M. Wong, J. Mondal, ACS Sustainable Chem. Eng. 2023, 11, 2066–2078.
- 17H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun, Nat. Commun. 2013, 4, 1357.
- 18
- 18aR. Paul, S. C. Shit, T. Fovanna, D. Ferri, B. Srinivasa Rao, G. T. K. K. Gunasooriya, D. Q. Dao, Q. V. Le, I. Shown, M. P. Sherburne, Q. T. Trinh, J. Mondal, ACS Appl. Mater. Interfaces 2020, 12, 50550–50565;
- 18bT. Senthamarai, V. G. Chandrashekhar, M. B. Gawande, N. V. Kalevaru, R. Zbořil, P. C. J. Kamer, R. V. Jagadeesh, M. Beller, Chem. Sci. 2020, 11, 2973–2981.
- 19J. Chen, M. Zhong, L. Tao, L. Liu, S. Jayakumar, C. Li, H. Li, Q. Yang, Green Chem. 2018, 20, 903–911.
- 20C. Xie, L. Lin, L. Huang, Z. Wang, Z. Jiang, Z. Zhang, B. Han, Nat. Commun. 2021, 12, 4823.
- 21
- 21aJ. Du, G. Liu, F. Li, Y. Zhu, L. Sun, Adv. Sci. 2019, 6, 1900117;
- 21bD. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A. M. Asiri, Q. Wei, X. Sun, Adv. Mater. 2018, 30, 1705366.
- 22X.-Y. Dong, Y.-N. Si, Q.-Y. Wang, S. Wang, S.-Q. Zang, Adv. Mater. 2021, 33, 2101568.
- 23Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 7121–7125.
- 24A. D. Handoko, F. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922–934.
- 25
- 25aF. Guo, S. Yang, Y. Liu, P. Wang, J. Huang, W.-Y. Sun, ACS Catal. 2019, 9, 8464–8470;
- 25bY. Qian, D. Li, Y. Han, H.-L. Jiang, J. Am. Chem. Soc. 2020, 142, 20763–20771.
- 26R. Das, S. Chakraborty, S. C. Peter, ACS Energy Lett. 2021, 6, 3270–3274.
- 27
- 27aS. R. Foit, I. C. Vinke, L. G. J. de Haart, R.-A. Eichel, Angew. Chem. Int. Ed. 2017, 56, 5402–5411;
- 27bM. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent, P. Yang, J. Am. Chem. Soc. 2017, 139, 9359–9363.
- 28Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.-L. Men, F.-F. Cao, S.-H. Yu, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 4123–4129.
- 29Y. Liu, J.-H. Guo, X.-Y. Dao, X.-D. Zhang, Y. Zhao, W.-Y. Sun, Chem. Commun. 2020, 56, 4110–4113.
- 30A. Gautam, S. Sk, A. Tiwari, B. M. Abraham, V. Perupogu, U. Pal, Chem. Commun. 2021, 57, 8660–8663.
- 31H. Sun, Z. Hu, X. Xu, J. He, J. Dai, H.-J. Lin, T.-S. Chan, C.-T. Chen, L. H. Tjeng, W. Zhou, Z. Shao, Chem. Mater. 2019, 31, 5919–5926.
- 32S. Wang, X. Wang, Appl. Catal. B 2015, 162, 494–500.
- 33Y. Wu, J. Jiang, Z. Weng, M. Wang, D. L. J. Broere, Y. Zhong, G. W. Brudvig, Z. Feng, H. Wang, ACS Cent. Sci. 2017, 3, 847–852.
- 34
- 34aS. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213;
- 34bR. Das, S. Sarkar, R. Kumar, S. D. Ramarao, A. Cherevotan, M. Jasil, C. P. Vinod, A. K. Singh, S. C. Peter, ACS Catal. 2022, 12, 687–697.
- 35J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 2018, 30, 1704649.
- 36C. Sarkar, R. Paul, D. Q. Dao, S. Xu, R. Chatterjee, S. C. Shit, A. Bhaumik, J. Mondal, ACS Appl. Mater. Interfaces 2022, 14, 37620–37636.
- 37S. Lee, S.-J. Shin, H. Baek, Y. Choi, K. Hyun, M. Seo, K. Kim, D.-Y. Koh, H. Kim, M. Choi, Sci. Adv. 2020, 6, eabb7369.
- 38F. Buß, P. Mehlmann, C. Mück-Lichtenfeld, K. Bergander, F. Dielmann, J. Am. Chem. Soc. 2016, 138, 1840–1843.
- 39
- 39aT. H. Tan, B. Xie, Y. H. Ng, S. F. B. Abdullah, H. Y. M. Tang, N. Bedford, R. A. Taylor, K.-F. Aguey-Zinsou, R. Amal, J. Scott, Nat. Catal. 2020, 3, 1034–1043;
- 39bK. Das, R. Das, M. Riyaz, A. Parui, D. Bagchi, A. K. Singh, A. K. Singh, C. P. Vinod, S. C. Peter, Adv. Mater. 2023, 35, 2205994.
- 40
- 40aX. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699;
- 40bR. Das, K. Das, B. Ray, C. P. Vinod, S. C. Peter, Energy Environ. Sci. 2022, 15, 1967–1976.
- 41R. Das, K. Das, S. R. Churipard, S. C. Peter, Chem. Commun. 2022, 58, 6638–6641.
- 42A. S. Rosen, M. R. Mian, T. Islamoglu, H. Chen, O. K. Farha, J. M. Notestein, R. Q. Snurr, J. Am. Chem. Soc. 2020, 142, 4317–4328.
- 43G. T. K. K. Gunasooriya, J. K. Nørskov, ACS Energy Lett. 2020, 5, 12, 3778–3787.
- 44G. T. K. K. Gunasooriya, A. P. van Bavel, H. P. C. E. Kuipers, M. Saeys, Surf. Sci. 2015, 642, L6–L10.
- 45S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Nano-Micro Lett. 2019, 11, 62.
- 46S. Karmakar, S. Barman, F. A. Rahimi, T. K. Maji, Energy Environ. Sci. 2021, 14, 2429–2440.