Spin Frustration in Organic Radicals
Dr. Shuxuan Tang
Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinping Wang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032 P. R. China
Search for more papers by this authorDr. Shuxuan Tang
Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinping Wang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032 P. R. China
Search for more papers by this authorGraphical Abstract
Spin frustration has drawn people's attention for its significance in physics and materials science, especially for quantum spin liquids. Organic radical species show a promising potential in building spin-frustrated compounds. This Minireview briefly introduces the reported examples of organic radicals that possess spin frustration and summarizes their related data on frustration properties.
Abstract
Spin frustration, which results from geometric frustration and a systematical inability to satisfy all antiferromagnetic (AF) interactions between unpaired spins simultaneously, is under the spotlight for its importance in physics and materials science. Spin frustration is treated as the structural basis of quantum spin liquids (QSLs). Featuring flexible chemical structures, organic radical species exhibit great potential in building spin-frustrated molecules and lattices. So far, the reported examples of spin-frustrated organic radical compounds include triradicals, tetrathiafulvalene (TTF) radicals and derivatives, [Pd(dmit)2] compounds (dmit=1,3-dithiol-2-thione-4,5-dithiolate), nitronyl nitroxides, fullerenes, polycyclic aromatic hydrocarbons (PAHs), and other heterocyclic compounds where the spin frustration is generated intra- or intermolecularly. In this Minireview, we provide a brief summary of the reported radical compounds that possess spin frustration. The related data, including magnetic exchange coupling parameters, spin models, frustration parameters, and crystal lattices, are summarized and discussed.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1G. H. Wannier, Phys. Rev. 1950, 79, 357–364.
- 2P. W. Anderson, Phys. Rev. 1956, 102, 1008–1013.
- 3P. W. Anderson, Mater. Res. Bull. 1973, 8, 153–160.
- 4A. P. Ramirez, Annu. Rev. Mater. Sci. 1994, 24, 453–480.
- 5B. Pilawa, Ann. Phys. 1999, 511, 191–254.
10.1002/andp.19995110302 Google Scholar
- 6J. E. Greedan, J. Mater. Chem. 2001, 11, 37–53.
- 7R. Moessner, A. P. Ramirez, Phys. Today 2006, 59, 24–29.
- 8R. Takeda, S. Yamanaka, K. Yamaguchi, Int. J. Quantum Chem. 2007, 107, 3219–3227.
- 9T. Hikihara, L. Kecke, T. Momoi, A. Furusaki, Phys. Rev. B 2008, 78, 144404.
- 10K. Yamaguchi, S. Yamanaka, H. Isobe, K. Kawakami, Y. Kitagawa, R. Takeda, T. Saito, M. Nishihara, M. Okumura, AIP Conf. Proc. 2009, 1108, 20–29.
- 11T. Kawakami, R. Takeda, S. Nishihara, T. Saito, M. Shoji, S. Yamada, S. Ymanaka, Y. Kitagawa, M. Okumura, K. Yamaguchi, J. Phys. Chem. A 2009, 113, 15281–15297.
- 12Y. Nakazawa, S. Yamashita, Chem. Lett. 2013, 42, 1446–1454.
- 13P. A. Lee, Science 2008, 321, 1306–1307.
- 14L. Balents, Nature 2010, 464, 199–208.
- 15T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, Y. S. Lee, Nature 2012, 492, 406–410.
- 16Y.-Z. Zheng, M.-L. Tong, W.-X. Zhang, X.-M. Chen, Chem. Commun. 2006, 165–167.
- 17B. Moulton, J. Lu, R. Hajndl, S. Hariharan, M. J. Zaworotko, Angew. Chem. Int. Ed. 2002, 41, 2821–2824.
10.1002/1521-3773(20020802)41:15<2821::AID-ANIE2821>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 18M. Mekata, Phys. Today 2003, 56, 12.
- 19S. K. Pati, C. N. Rao, Chem. Commun. 2008, 4683–4693.
- 20Y.-Z. Zheng, M.-L. Tong, W. Xue, W.-X. Zhang, X.-M. Chen, F. Grandjean, G. J. Long, Angew. Chem. Int. Ed. 2007, 46, 6076–6080.
- 21Y. Wu, M. D. Krzyaniak, J. F. Stoddart, M. R. Wasielewski, J. Am. Chem. Soc. 2017, 139, 2948–2951.
- 22A. Harrison, J. Phys. Condens. Matter 2004, 16, S553–S572.
- 23S. T. Bramwell, M. J. P. Gingras, Science 2001, 294, 1495–1501.
- 24B. J. Powell, R. H. McKenzie, Rep. Prog. Phys. 2011, 74, 056501.
- 25C. Michaut, L. Ouahab, P. Bergerat, O. Kahn, A. Bousseksou, J. Am. Chem. Soc. 1996, 118, 3610–3616.
- 26M. Tanaka, K. Matsuda, T. Itoh, H. Iwamura, Angew. Chem. Int. Ed. 1998, 37, 810–812.
10.1002/(SICI)1521-3773(19980403)37:6<810::AID-ANIE810>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 27D. Ruiz-Molina, C. Sporer, K. Wurst, P. Jaitner, J. Veciana, Angew. Chem. Int. Ed. 2000, 39, 3688–3691.
10.1002/1521-3773(20001016)39:20<3688::AID-ANIE3688>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 28N. D. Kushch, A. V. Kazakova, A. D. Dubrovskii, G. V. Shilov, L. I. Buravov, R. B. Morgunov, E. V. Kurganova, Y. Tanimoto, E. B. Yagubskii, J. Mater. Chem. 2007, 17, 4407–4413.
- 29A. Miyazaki, H. Yamazaki, M. Aimatsu, T. Enoki, R. Watanabe, E. Ogura, Y. Kuwatani, M. Iyoda, Inorg. Chem. 2007, 46, 3353–3366.
- 30Y. Hosokoshi, K. Katoh, Y. Nakazawa, H. Nakano, K. Inoue, J. Am. Chem. Soc. 2001, 123, 7921–7922.
- 31T. Ise, D. Shiomi, K. Sato, T. Takui, Chem. Mater. 2005, 17, 4486–4492.
- 32C. Rancurel, H. Heise, F. H. Köhler, U. Schatzschneider, E. Rentschler, J. Vidal-Gancedo, J. Veciana, J.-P. Sutter, J. Phys. Chem. A 2004, 108, 5903–5914.
- 33S. Ghorai, C. Mukherjee, Chem. Commun. 2012, 48, 10180–10182.
- 34T. Kodama, M. Aoba, Y. Hirao, S. M. Rivero, J. Casado, T. Kubo, Angew. Chem. Int. Ed. 2022, 61, e202200688.
- 35T. Itoh, K. Matsuda, H. Iwamura, K. Hori, J. Am. Chem. Soc. 2000, 122, 2567–2576.
- 36T. Itoh, K. Matsuda, H. Iwamura, K. Hori, J. Solid State Chem. 2001, 159, 428–439.
- 37O. B. Borobia, P. Guionneau, H. Heise, F. H. Köhler, L. Ducasse, J. Vidal-Gancedo, J. Veciana, S. Golhen, L. Ouahab, J.-P. Sutter, Chem. Eur. J. 2005, 11, 128–139.
- 38M. Takahashi, Y. Kimura, M. Hagiwara, K. Kishikawa, S. Kohmoto, Synth. Met. 2011, 161, 1557–1562.
- 39S. Suzuki, A. Nagata, M. Kuratsu, M. Kozaki, R. Tanaka, D. Shiomi, K. Sugisaki, K. Toyota, K. Sato, T. Takui, K. Okada, Angew. Chem. Int. Ed. 2012, 51, 3193–3197.
- 40R. Kurata, D. Sakamaki, M. Uebe, M. Kinoshita, T. Iwanaga, T. Matsumoto, A. Ito, Org. Lett. 2017, 19, 4371–4374.
- 41L. Wang, J. Li, L. Zhang, Y. Fang, C. Chen, Y. Zhao, Y. Song, L. Deng, G. Tan, X. Wang, P. P. Power, J. Am. Chem. Soc. 2017, 139, 17723–17726.
- 42X. Dong, Q.-C. Luo, Y. Zhao, T. Wang, Q. Sun, R. Pei, Y. Zhao, Y.-Z. Zheng, X. Wang, J. Am. Chem. Soc. 2023, 145, 17292–17298.
- 43A. Izuoka, M. Fukada, T. Sugawara, M. Sakai, S. Bandow, Chem. Lett. 1992, 21, 1627–1630.
- 44A. Izuoka, M. Fukada, T. Sugawara, Mol. Cryst. Liq. Cryst. 1993, 232, 103–108.
- 45J. Veciana, C. Rovira, N. Ventosa, M. I. Crespo, F. Palacio, J. Am. Chem. Soc. 1993, 115, 57–64.
- 46J. Sedó, N. Ventosa, D. Ruiz-Molina, M. Mas, E. Molins, C. Rovira, J. Veciana, Angew. Chem. Int. Ed. 1998, 37, 330–333.
10.1002/(SICI)1521-3773(19980216)37:3<330::AID-ANIE330>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 47S. Hayami, K. Inoue, Chem. Lett. 1999, 28, 545–546.
10.1246/cl.1999.545 Google Scholar
- 48T. Nozawa, M. Ichinohe, A. Sekiguchi, Chem. Lett. 2015, 44, 56–57.
- 49S. Suzuki, T. Wada, R. Tanimoto, M. Kozaki, D. Shiomi, K. Sugisaki, K. Sato, T. Takui, Y. Miyake, Y. Hosokoshi, K. Okada, Angew. Chem. Int. Ed. 2016, 55, 10791–10794.
- 50D. Shimizu, A. Osuka, Angew. Chem. Int. Ed. 2018, 57, 3733–3736.
- 51R. Gaudenzi, E. Burzurí, D. Reta, I. D. P. R. Moreira, S. T. Bromley, C. Rovira, J. Veciana, H. S. J. van der Zant, Nano Lett. 2016, 16, 2066–2071.
- 52W.-X. Zhang, W. Xue, J.-B. Lin, Y.-Z. Zheng, X.-M. Chen, CrystEngComm 2008, 10, 1770–1776.
- 53C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, T. Senthil, Science 2020, 367, eaay0668.
- 54J. R. Chamorro, T. M. McQueen, T. T. Tran, Chem. Rev. 2021, 121, 2898–2934.
- 55S. Kivelson, S. Sondhi, Nat. Rev. Phys. 2023, https://doi.org/10.1038/s42254-42023-00596-x.
- 56Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett. 2003, 91, 107001.
- 57S. Ohira, Y. Shimizu, K. Kanoda, G. Saito, J. Low Temp. Phys. 2007, 142, 153–158.
- 58F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, S. Ohira-Kawamura, C. Baines, Y. Shimizu, K. Kanoda, I. Watanabe, G. Saito, Nature 2011, 471, 612–616.
- 59T. Isono, H. Kamo, A. Ueda, K. Takahashi, A. Nakao, R. Kumai, H. Nakao, K. Kobayashi, Y. Murakami, H. Mori, Nat. Commun. 2013, 4, 1344.
- 60T. Isono, H. Kamo, A. Ueda, K. Takahashi, M. Kimata, H. Tajima, S. Tsuchiya, T. Terashima, S. Uji, H. Mori, Phys. Rev. Lett. 2014, 112, 177201.
- 61T. Hiramatsu, Y. Yoshida, G. Saito, A. Otsuka, H. Yamochi, Y. Shimizu, Y. Hattori, Y. Nakamura, H. Kishida, H. Ito, K. Kirakci, S. Cordier, C. Perrin, J. Mater. Chem. C 2015, 3, 11046–11054.
- 62Y. Yoshida, M. Maesato, Y. Nakamura, M. Ishikawa, H. Yamochi, G. Saito, H. Kishida, H. Kitagawa, Inorg. Chem. 2019, 58, 16703–16711.
- 63R. Kato, A. Tajima, N. Tajima, A. Nakao, M. Tamura, J. Phys. IV France 2004, 114, 411–417.
- 64T. Itou, A. Oyamada, S. Maegawa, M. Tamura, R. Kato, J. Phys. Condens. Matter 2007, 19, 145247.
- 65M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M. Yamamoto, R. Kato, T. Shibauchi, Y. Matsuda, Science 2010, 328, 1246–1248.
- 66S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, R. Kato, Nat. Commun. 2011, 2, 275.
- 67R. Kato, C. Hengbo, Crystals 2012, 2, 861–874.
- 68E. P. Scriven, B. J. Powell, Phys. Rev. Lett. 2012, 109, 097206.
- 69K. Awaga, T. Inabe, Y. Maruyama, Chem. Phys. Lett. 1992, 195, 21–24.
- 70K. Awaga, T. Okuno, A. Yamaguchi, M. Hasegawa, T. Inabe, Y. Maruyama, N. Wada, Phys. Rev. B 1994, 49, 3975–3981.
- 71K. Awaga, K. Takeda, A. Yamaguchi, T. Okuno, H. Yano, N. Wada, Synth. Met. 1997, 85, 1643–1646.
- 72N. Wada, T. Kobayashi, H. Yano, T. Okuno, A. Yamaguchi, K. Awaga, J. Phys. Soc. Jpn. 1997, 66, 961–964.
- 73Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater. 1998, 177–181, 991–992.
- 74K. Awaga, N. Wada, I. Watanabe, T. Inabe, Philos. Trans. R. Soc. Lond. A 1999, 357, 2893–2922.
- 75T. Matsushita, N. Hamaguchi, K. Shimizu, N. Wada, W. Fujita, K. Awaga, A. Yamaguchi, H. Ishimoto, J. Phys. Soc. Jpn. 2010, 79, 093701.
- 76D. V. Konarev, S. S. Khasanov, A. Otsuka, G. Saito, R. N. Lyubovskaya, CrystEngComm 2009, 11, 811–816.
- 77D. V. Konarev, S. S. Khasanov, A. Otsuka, M. Maesato, M. Uruichi, K. Yakushi, A. F. Shevchun, H. Yamochi, G. Saito, R. N. Lyubovskaya, Chem. Eur. J. 2014, 20, 7268–7277.
- 78D. V. Konarev, S. S. Khasanov, A. V. Kuzmin, A. Otsuka, H. Yamochi, G. Saito, R. N. Lyubovskaya, New J. Chem. 2016, 40, 2792–2798.
- 79D. V. Konarev, S. S. Khasanov, Y. Shimizu, A. V. Kuzmin, A. Otsuka, H. Yamochi, G. Saito, R. N. Lyubovskaya, Phys. Chem. Chem. Phys. 2019, 21, 1645–1649.
- 80Y. Takabayashi, M. Menelaou, H. Tamura, N. Takemori, T. Koretsune, A. Štefančič, G. Klupp, A. J. C. Buurma, Y. Nomura, R. Arita, D. Arčon, M. J. Rosseinsky, K. Prassides, Nat. Chem. 2017, 9, 635–643.
- 81D. V. Konarev, A. V. Kuzmin, S. S. Khasanov, A. F. Shestakov, A. Otsuka, H. Yamochi, H. Kitagawa, R. N. Lyubovskaya, Chem. Asian J. 2020, 15, 2689–2695.
- 82W. Wang, X.-H. Ma, M. Liu, S. Tang, X. Ding, Y. Zhao, Y.-Z. Tan, M. Kertesz, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202217788.
- 83K. Mukai, M. Matsubara, H. Hisatou, Y. Hosokoshi, K. Inoue, N. Azuma, J. Phys. Chem. B 2002, 106, 8632–8638.
- 84L. Postulka, S. M. Winter, A. G. Mihailov, A. Mailman, A. Assoud, C. M. Robertson, B. Wolf, M. Lang, R. T. Oakley, J. Am. Chem. Soc. 2016, 138, 10738–10741.
- 85A. Mizuno, Y. Shuku, M. M. Matsushita, M. Tsuchiizu, Y. Hara, N. Wada, Y. Shimizu, K. Awaga, Phys. Rev. Lett. 2017, 119, 057201.
- 86I. Watanabe, N. Wada, H. Yano, T. Okuno, K. Awaga, S. Ohira, K. Nishiyama, K. Nagamine, Phys. Rev. B 1998, 58, 2438–2441.
- 87A. Otsuka, D. V. Konarev, R. N. Lyubovskaya, S. S. Khasanov, M. Maesato, Y. Yoshida, G. Saito, Crystals 2018, 8, 115.
- 88P. Dubey, D. Muthukumaran, S. Dash, R. Mukhopadhyay, S. Sarkar, Pramana-J. Phys. 2005, 65, 681–697.