“Dual-Key-and-Lock” NIR-II NSCyanines Enable High-Contrast Activatable Phototheranostics in Extrahepatic Diseases
Yang Tian
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorZhaoming Chen
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorSenyao Liu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorFapu Wu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorWenwen Cao
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Dai-Wen Pang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Hu Xiong
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorYang Tian
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorZhaoming Chen
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorSenyao Liu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorFapu Wu
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorWenwen Cao
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Dai-Wen Pang
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Hu Xiong
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071 Tianjin, China
Search for more papers by this authorGraphical Abstract
“Dual-key-and-lock” NIR-II NSCyanine dyes have been developed by harnessing a non-symmetric strategy, which enables activatable liver imaging and therapy with high signal-to-background ratio in extrahepatic diseases, including metastasis-imaging, acute gastritis-imaging, bacteria infected wound healing, and tumor ablation via combined photothermal therapy and chemotherapy.
Abstract
Conventional cyanine dyes with a symmetric structure are “always-on”, which can easily accumulate in the liver and display high liver background fluorescence, inevitably interfering the accurate diagnosis and therapy in extrahepatic diseases. We herein report a platform of NIR-II non-symmetric cyanine (NSCyanine) dyes by harnessing a non-symmetric strategy, which are extremely sensitive to pH/viscosity and can be activated via a “dual-key-and-lock” strategy. These NSCyanine dyes with a low pKa (<4.0) only show weak fluorescence at lysosome pH (key1), however, the fluorescence can be completely switched on and significantly enhanced by intracellular viscosity (key2) in disease tissues, exhibiting high target-to-liver ratios up to 19.5/1. Notably, high-contrast phototheranostics in extrahepatic diseases are achieved, including intestinal metastasis-imaging, acute gastritis-imaging, bacteria infected wound healing, and tumor ablation via targeted combined photothermal therapy and chemotherapy.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202309768-sup-0001-misc_information.pdf7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Chem. Rev. 2016, 116, 7768–7817;
- 1bG. Fei, S. Ma, C. Wang, T. Chen, Y. Li, Y. Liu, B. Tang, T. D. James, G. Chen, Coord. Chem. Rev. 2021, 447, 214134;
- 1cH. Li, Y. Kim, H. Jung, J. Y. Hyun, I. Shin, Chem. Soc. Rev. 2022, 51, 8957–9008.
- 2
- 2aJ. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns, Proc. Natl. Acad. Sci. USA 2018, 115, 4465–4470;
- 2bZ. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian, Nat. Biomed. Eng. 2020, 4, 259–271;
- 2cR. W. Gao, N. Teraphongphom, E. de Boer, N. S. van den Berg, V. Divi, M. J. Kaplan, N. J. Oberhelman, S. S. Hong, E. Capes, A. D. Colevas, J. M. Warram, E. L. Rosenthal, Theranostics 2018, 8, 2488–2495.
- 3Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16–29.
- 4S. Zhu, Z. Hu, R. Tian, B. C. Yung, Q. Yang, S. Zhao, D. O. Kiesewetter, G. Niu, H. Sun, A. L. Antaris, X. Chen, Adv. Mater. 2018, 30, 1802546.
- 5
- 5aG. S. Hong, A. L. Antaris, H. J. Dai, Nat. Biomed. Eng. 2017, 1, 0010;
- 5bZ. Lei, F. Zhang, Angew. Chem. Int. Ed. 2021, 60, 16294–16308;
- 5cS. Wang, B. Li, F. Zhang, ACS Cent. Sci. 2020, 6, 1302–1316;
- 5dY. Liu, Y. Li, S. Koo, Y. Sun, Y. Liu, X. Liu, Y. Pan, Z. Zhang, M. Du, S. Lu, X. Qiao, J. Gao, X. Wang, Z. Deng, X. Meng, Y. Xiao, J. S. Kim, X. Hong, Chem. Rev. 2022, 122, 209–268;
- 5eS. Liu, W. Xu, X. Li, D. W. Pang, H. Xiong, ACS Nano 2022, 16, 17424–17434;
- 5fC. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, J. Am. Chem. Soc. 2020, 142, 14789–14804;
- 5gS. Zhu, R. Tian, A. L. Antaris, X. Chen, H. Dai, Adv. Mater. 2019, 31, 1900321;
- 5hS. He, J. Song, J. Qu, Z. Cheng, Chem. Soc. Rev. 2018, 47, 4258–4278;
- 5iW. Xu, D. Wang, B. Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 7476–7487;
- 5jD. Liu, Z. He, Y. Zhao, Y. Yang, W. Shi, X. Li, H. Ma, J. Am. Chem. Soc. 2021, 143, 17136–17143.
- 6
- 6aB. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7483–7487;
- 6bB. Ding, Y. Xiao, H. Zhou, X. Zhang, C. Qu, F. Xu, Z. Deng, Z. Cheng, X. Hong, J. Med. Chem. 2019, 62, 2049–2059;
- 6cZ. Lei, C. Sun, P. Pei, S. Wang, D. Li, X. Zhang, F. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8166–8171;
- 6dY. Yang, C. Sun, S. Wang, K. Yan, M. Zhao, B. Wu, F. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202117436;
- 6eE. D. Cosco, J. R. Caram, O. T. Bruns, D. Franke, R. A. Day, E. P. Farr, M. G. Bawendi, E. M. Sletten, Angew. Chem. Int. Ed. 2017, 56, 13126–13129;
- 6fE. D. Cosco, B. A. Arus, A. L. Spearman, T. L. Atallah, I. Lim, O. S. Leland, J. R. Caram, T. S. Bischof, O. T. Bruns, E. M. Sletten, J. Am. Chem. Soc. 2021, 143, 6836–6846;
- 6gB. Li, M. Zhao, L. Feng, C. Dou, S. Ding, G. Zhou, L. Lu, H. Zhang, F. Chen, X. Li, G. Li, S. Zhao, C. Jiang, Y. Wang, D. Zhao, Y. Cheng, F. Zhang, Nat. Commun. 2020, 11, 3102;
- 6hX. Ma, Y. Huang, S. A. A. Abedi, H. Kim, T. T. B. Davin, X. Liu, W.-C. Yang, Y. Sun, S. H. Liu, J. Yin, J. Yoon, G.-F. Yang, CCS Chem. 2022, 4, 1961–1976;
- 6iM. M. M. Swamy, Y. Murai, K. Monde, S. Tsuboi, T. Jin, Bioconjugate Chem. 2021, 32, 1541–1547.
- 7
- 7aJ. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717–11731;
- 7bM. Zhao, B. Li, H. Zhang, F. Zhang, Chem. Sci. 2021, 12, 3448–3459;
- 7cC. Chen, R. Tian, Y. Zeng, C. Chu, G. Liu, Bioconjugate Chem. 2020, 31, 276–292.
- 8
- 8aS. Wang, Y. Fan, D. Li, C. Sun, Z. Lei, L. Lu, T. Wang, F. Zhang, Nat. Commun. 2019, 10, 1058;
- 8bT. B. Ren, Z. Y. Wang, Z. Xiang, P. Lu, H. H. Lai, L. Yuan, X. B. Zhang, W. Tan, Angew. Chem. Int. Ed. 2021, 60, 800–805;
- 8cW. Feng, Y. Zhang, Z. Li, S. Zhai, W. Lv, Z. Liu, Anal. Chem. 2019, 91, 15757–15762;
- 8dY. Tian, S. Liu, W. Cao, P. Wu, Z. Chen, H. Xiong, Anal. Chem. 2022, 94, 11321–11328;
- 8eD. Li, S. Wang, Z. Lei, C. Sun, A. M. El-Toni, M. S. Alhoshan, Y. Fan, F. Zhang, Anal. Chem. 2019, 91, 4771–4779;
- 8fQ. Lan, P. Yu, K. Yan, X. Li, F. Zhang, Z. Lei, J. Am. Chem. Soc. 2022, 144, 21010–21015;
- 8gL. He, L. H. He, S. Xu, T. B. Ren, X. X. Zhang, Z. J. Qin, X. B. Zhang, L. Yuan, Angew. Chem. Int. Ed. 2022, 61, e202211409;
- 8hX. Meng, J. Zhang, Z. Sun, L. Zhou, G. Deng, S. Li, W. Li, P. Gong, L. Cai, Theranostics 2018, 8, 6025–6034.
- 9
- 9aB. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Nat. Rev. Cancer 2011, 11, 671–677;
- 9bJ. R. Casey, S. Grinstein, J. Orlowski, Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61;
- 9cJ. T. Hou, W. X. Ren, K. Li, J. Seo, A. Sharma, X. Q. Yu, J. S. Kim, Chem. Soc. Rev. 2017, 46, 2076–2090.
- 10
- 10aY. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P. L. Choyke, H. Kobayashi, Nat. Med. 2009, 15, 104–109;
- 10bY. Wang, K. Zhou, G. Huang, C. Hensley, X. Huang, X. Ma, T. Zhao, B. D. Sumer, R. J. DeBerardinis, J. Gao, Nat. Mater. 2014, 13, 204–212;
- 10cH. Xiong, P. Kos, Y. Yan, K. Zhou, J. B. Miller, S. Elkassih, D. J. Siegwart, Bioconjugate Chem. 2016, 27, 1737–1744;
- 10dH. Xiong, H. Zuo, Y. Yan, G. Occhialini, K. Zhou, Y. Wan, D. J. Siegwart, Adv. Mater. 2017, 29, 1700131;
- 10eP. Wu, Y. Zhu, S. Liu, H. Xiong, ACS Cent. Sci. 2021, 7, 2039–2048;
- 10fX. Li, P. Wu, W. Cao, H. Xiong, Chem. Commun. 2021, 57, 10636–10639;
- 10gL. Gui, Z. Yuan, H. Kassaye, J. Zheng, Y. Yao, F. Wang, Q. He, Y. Shen, L. Liang, H. Chen, Chem. Commun. 2018, 54, 9675–9678;
- 10hS. M. Usama, F. Inagaki, H. Kobayashi, M. J. Schnermann, J. Am. Chem. Soc. 2021, 143, 5674–5679;
- 10iH. Lee, W. Akers, K. Bhushan, S. Bloch, G. Sudlow, R. Tang, S. Achilefu, Bioconjugate Chem. 2011, 22, 777–784;
- 10jY. Wang, Z. Lei, C. Wang, C. Cao, J. Hu, L. Du, L. Han, C. Li, RSC Adv. 2021, 11, 17871–17879.
- 11M. Zhao, J. Wang, Z. Lei, L. Lu, S. Wang, H. Zhang, B. Li, F. Zhang, Angew. Chem. Int. Ed. 2021, 60, 5091–5095.
- 12Z. Qin, T. B. Ren, H. Zhou, X. Zhang, L. He, Z. Li, X. B. Zhang, L. Yuan, Angew. Chem. Int. Ed. 2022, 61, e202201541.
- 13Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng, J. S. Kim, Chem. Soc. Rev. 2014, 43, 4563–4601.
- 14
- 14aJ. Liu, W. Zhang, C. Zhou, M. Li, X. Wang, W. Zhang, Z. Liu, L. Wu, T. D. James, P. Li, B. Tang, J. Am. Chem. Soc. 2022, 144, 13586–13599;
- 14bW. Xu, S. Liu, Z. Chen, F. Wu, W. Cao, Y. Tian, H. Xiong, Anal. Chem. 2022, 94, 13556–13565;
- 14cB. Li, H. Liu, Y. He, M. Zhao, C. Ge, M. R. Younis, P. Huang, X. Chen, J. Lin, Angew. Chem. Int. Ed. 2022, 61, e202200025;
- 14dK. Dou, W. Huang, Y. Xiang, S. Li, Z. Liu, Anal. Chem. 2020, 92, 4177–4181.
- 15
- 15aH. Bian, D. Ma, X. Zhang, K. Xin, Y. Yang, X. Peng, Y. Xiao, Small 2021, 17, 2100398;
- 15bW. Cao, Y. Zhu, F. Wu, Y. Tian, Z. Chen, W. Xu, S. Liu, T. Liu, H. Xiong, Small 2022, 18, 2204851.
- 16Z. Wang, N. Little, J. Chen, K. T. Lambesis, K. T. Le, W. Han, A. J. Scott, J. Lu, Nat. Nanotechnol. 2021, 16, 1130–1140.
- 17
- 17aT. B. Ren, W. Xu, W. Zhang, X. X. Zhang, Z. Y. Wang, Z. Xiang, L. Yuan, X. B. Zhang, J. Am. Chem. Soc. 2018, 140, 7716–7722;
- 17bY. Ma, B. Guo, J. Y. Ge, L. Chen, N. Lv, X. Wu, J. Chen, Z. Chen, Anal. Chem. 2022, 94, 12383–12390.
- 18
- 18aY. Chen, L. Li, W. Chen, H. Chen, J. Yin, Chin. Chem. Lett. 2019, 30, 1353–1360;
- 18bX. Zhao, H. Zhao, S. Wang, Z. Fan, Y. Ma, Y. Yin, W. Wang, R. Xi, M. Meng, J. Am. Chem. Soc. 2021, 143, 20828–20836;
- 18cX. Zhao, S. Long, M. Li, J. Cao, Y. Li, L. Guo, W. Sun, J. Du, J. Fan, X. Peng, J. Am. Chem. Soc. 2020, 142, 1510–1517.
- 19B. Annibale, G. Capurso, E. Lahner, S. Passi, R. Ricci, F. Maggio, G. Delle Fave, Gut 2003, 52, 496–501.
- 20L. Zhou, T. Min, X. Bian, Y. Dong, P. Zhang, Y. Wen, ACS Appl. Bio Mater. 2022, 5, 4055–4085.
- 21J. Yan, S. Lee, A. Zhang, J. Yoon, Chem. Soc. Rev. 2018, 47, 6900–6916.
- 22Y. Liu, X. Lv, J. Liu, Y. Q. Sun, W. Guo, Chem. Eur. J. 2015, 21, 4747–4754.