Reconstructing Hydrogen Bond Network Enables High Voltage Aqueous Zinc-Ion Supercapacitors
Zhiyu Hu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorZirui Song
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorZhaodong Huang
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, China
Search for more papers by this authorShusheng Tao
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorBai Song
Dongying Cospowers Technology Limited Company China, Dongying, 257091 China
Search for more papers by this authorZiwei Cao
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorXinyu Hu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorJiae Wu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorFengrong Li
College of Materials Science and Engineering, Changsha University of Science and Technology, 410114 Changsha, China
Search for more papers by this authorProf. Wentao Deng
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorProf. Hongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorCorresponding Author
Prof. Guoqiang Zou
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorZhiyu Hu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorZirui Song
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorZhaodong Huang
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, China
Search for more papers by this authorShusheng Tao
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorBai Song
Dongying Cospowers Technology Limited Company China, Dongying, 257091 China
Search for more papers by this authorZiwei Cao
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorXinyu Hu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorJiae Wu
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorFengrong Li
College of Materials Science and Engineering, Changsha University of Science and Technology, 410114 Changsha, China
Search for more papers by this authorProf. Wentao Deng
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorProf. Hongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorCorresponding Author
Prof. Guoqiang Zou
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China
Search for more papers by this authorGraphical Abstract
A new aqueous hybrid high-pressure electrolyte has been developed by incorporating DMF and PEG400 as co-solvents, enabling the reconfiguration of hydrogen bonding networks in water and control over the interfacial transfer processes. This electrolyte exhibits a wider electrochemical stability window, significantly enhancing the stability and cycling lifespan of assembled zinc ion supercapacitors under high pressure.
Abstract
High-voltage aqueous rechargeable energy storage devices with safety and high specific energy are hopeful candidates for the future energy storage system. However, the electrochemical stability window of aqueous electrolytes is a great challenge. Herein, inspired by density functional theory (DFT), polyethylene glycol (PEG) can interact strongly with water molecules, effectively reconstructing the hydrogen bond network. In addition, N, N-dimethylformamide (DMF) can coordinate with Zn2+, assisting in the rapid desolvation of Zn2+ and stable plating/stripping process. Remarkably, by introducing PEG400 and DMF as co-solvents into the electrolyte, a wide electrochemical window of 4.27 V can be achieved. The shift in spectra indicate the transformation in the number and strength of hydrogen bonds, verifying the reconstruction of hydrogen bond network, which can largely inhibit the activity of water molecule, according well with the molecular dynamics simulations (MD) and online electrochemical mass spectroscopy (OEMS). Based on this electrolyte, symmetric Zn cells survived up to 5000 h at 1 mA cm−2, and high voltage aqueous zinc ion supercapacitors assembled with Zn anode and activated carbon cathode achieved 800 cycles at 0.1 A g−1. This work provides a feasible approach for constructing high-voltage alkali metal ion supercapacitors through reconstruction strategy of hydrogen bond network.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202309601-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Gong, J. Chen, P. S. Lee, Batteries & Supercaps 2021, 4, 1529–1546;
- 1bS. Chen, K. Wen, J. Fan, Y. Bando, D. Golberg, J. Mater. Chem. A 2018, 6, 11631–11663;
- 1cM. R. Palacín, Chem. Soc. Rev. 2009, 38, 2565–2575;
- 1dC. Liu, B. Wang, L. Xu, K. Zou, W. Deng, H. Hou, G. Zou, X. Ji, ACS Applied Materials and Interfaces 2023, 15, 5387–5398;
- 1eC. Liu, X. Fu, S. Liao, G. Zou, H. Yang, Nanomaterials 2023, 13.
- 2R. Jia, G. Shen, D. Chen, Sci. China Mater. 2020, 63, 185–206.
- 3
- 3aH. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 2020, 70, 104523;
- 3bA. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, Adv. Mater. 2019, 31, 1900668;
- 3cZ. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao, W. Deng, H. Hou, G. Zou, X. Ji, Advanced Functional Materials 2022, 32, 2205453.
- 4
- 4aW. Fan, J. Wu, H. Wang, Mater. Res. Lett. 2023, 11, 481–516;
- 4bL. Liu, Y.-C. Wu, L. Huang, K. Liu, B. Duployer, P. Rozier, P.-L. Taberna, P. Simon, Adv. Energy Mater. 2021, 11, 2101287.
- 5L. Dong, W. Yang, W. Yang, Y. Li, W. Wu, G. Wang, J. Mater. Chem. A 2019, 7, 13810–13832.
- 6
- 6aK. Xu, Y. Lam, S. S. Zhang, T. R. Jow, T. B. Curtis, J. Phys. Chem. C 2007, 111, 7411–7421;
- 6bJ. O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources 1995, 54, 228–231;
- 6cL. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin, T. Gao, F. Wang, A. Kushima, Z. Wang, H.-C. Kim, Y. Qi, W. Yang, F. Pan, J. Li, K. Xu, C. Wang, J. Am. Chem. Soc. 2017, 139, 18670–18680.
- 7Y. Deng, H. Wang, K. Zhang, J. Qiu, L. Yan, Adv. Sustainable Syst. 2022, 6, 2100191.
- 8
- 8aX. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Energy Storage Mater. 2019, 20, 410–437;
- 8bH. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 5374.
- 9
- 9aH. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. Int. Ed. 2020, 59, 9377–9381;
- 9bH. Wang, C. Luo, Y. Qian, C. Yang, X. Shi, Y. Gong, R. Wang, B. He, J. Jin, A. Tang, E. Huixiang Ang, H. Yang, J. Energy Chem. 2023, 81, 157–166.
- 10Z. Huang, T. Wang, X. Li, H. Cui, G. Liang, Q. Yang, Z. Chen, A. Chen, Y. Guo, J. Fan, C. Zhi, Adv. Mater. 2021, 33, e2106180.
- 11L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938–943.
- 12L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, C. Yang, Y.-S. Hu, K. Xu, C. Wang, Adv. Energy Mater. 2017, 7, 1701189.
- 13R.-S. Kühnel, D. Reber, C. Battaglia, ACS Energy Lett. 2017, 2, 2005–2006.
- 14X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, J. Mater. Chem. A 2019, 7, 7541–7547.
- 15C. Li, W. Yuan, C. Li, H. Wang, L. Wang, Y. Liu, N. Zhang, Chem. Commun. 2021, 57, 4319–4322.
- 16
- 16aQ. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, X. Yan, Energy Environ. Sci. 2018, 11, 3212–3219;
- 16bX. Dong, Y. Lin, P. Li, Y. Ma, J. Huang, D. Bin, Y. Wang, Y. Qi, Y. Xia, Angew. Chem. Int. Ed. 2019, 58, 5623–5627;
- 16cB. Niu, Z. Li, D. Luo, X. Ma, Q. Yang, Y.-E. Liu, X. Yu, X. He, Y. Qiao, X. Wang, Energy Environ. Sci. 2023, 16, 1662–1675.
- 17
- 17aN. Chang, T. Li, R. Li, S. Wang, Y. Yin, H. Zhang, X. Li, Energy Environ. Sci. 2020, 13, 3527–3535;
- 17bF. Li, L. Yu, Q. Hu, S. Guo, Y. Mei, Q. Liu, Y. He, X. Hu, Sci. China Mater. 2021, 64, 1609–1620.
- 18H. Ao, C. Chen, Z. Hou, W. Cai, M. Liu, Y. Jin, X. Zhang, Y. Zhu, Y. Qian, J. Mater. Chem. A 2020, 8, 14190–14197.
- 19J. Xie, Z. Liang, Y.-C. Lu, Nat. Mater. 2020, 19, 1006–1011.
- 20J. Eskusson, T. Thomberg, E. Lust, A. Jänes, J. Electrochem. Soc. 2022, 169, 020512.
- 21J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu, C. Wang, Z. Zhang, S. Wang, Y. Shi, L. Yin, R. Wang, Adv. Funct. Mater. 2023, 33, 2215027.
- 22
- 22aR. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, F. Saija, J. Phys. D 2010, 43, 175405;
- 22bY. Shi, R. Wang, S. Bi, M. Yang, L. Liu, Z. Niu, Adv. Funct. Mater. 2023, 33, 2214546.
- 23Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 1, 16129.
- 24J.-B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, P. Roy, J. Chem. Phys. 2005, 122.
- 25H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512–7515.
- 26
- 26aM. Li, C. Wang, Z. Chen, K. Xu, J. Lu, Chem. Rev. 2020, 120, 6783–6819;
- 26bJ. Chen, X. Fan, Q. Li, H. Yang, M. R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Nat. Energy 2020, 5, 386–397.
- 27Q. Yang, Y. Guo, J. Gu, N. Li, C. Wang, Z. Liu, X. Li, Z. Huang, S. Wei, S. Xu, L. Song, J. Fan, Z. Chen, J. Qiu, C. Zhi, Nano Energy 2020, 78, 105283.
- 28T. Liu, H. Wu, X. Du, J. Wang, Z. Chen, H. Wang, J. Sun, J. Zhang, J. Niu, L. Yao, J. Zhao, G. Cui, ACS Appl. Mater. Interfaces 2022, 14, 33041–33051.
- 29J. Hao, J. Long, B. Li, X. Li, S. Zhang, F. Yang, X. Zeng, Z. Yang, W. K. Pang, Z. Guo, Adv. Funct. Mater. 2019, 29, 1903605.
- 30
- 30aH. Peng, C. Liu, N. Wang, C. Wang, D. Wang, Y. Li, B. Chen, J. Yang, Y. Qian, Energy Environ. Sci. 2022, 15, 1682–1693;
- 30bP. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.
- 31
- 31aC. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodríguez-Pérez, J.-X. Jiang, C. Fang, X. Ji, Chem. Commun. 2018, 54, 14097–14099;
- 31bM. Zhou, Y. Chen, G. Fang, S. Liang, Energy Storage Mater. 2022, 45, 618–646.
- 32H. Wang, X. Feng, Y. Chen, Y.-S. Liu, K. S. Han, M. Zhou, M. H. Engelhard, V. Murugesan, R. S. Assary, T. L. Liu, W. Henderson, Z. Nie, M. Gu, J. Xiao, C. Wang, K. Persson, D. Mei, J.-G. Zhang, K. T. Mueller, J. Guo, K. Zavadil, Y. Shao, J. Liu, ACS Energy Lett. 2020, 5, 200–206.
- 33
- 33aJ. Han, H. Euchner, M. Kuenzel, S. M. Hosseini, A. Groß, A. Varzi, S. Passerini, ACS Energy Lett. 2021, 6, 3063–3071;
- 33bD. Li, L. Cao, T. Deng, S. Liu, C. Wang, Angew. Chem. Int. Ed. 2021, 60, 13035–13041;
- 33cY. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Adv. Mater. 2021, 33, 2007388.
- 34S. Liu, R. Zhang, J. Mao, Y. Zhao, Q. Cai, Z. Guo, Sci. Adv. 2022, 8, eabn5097.
- 35Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938–1949.
- 36L. Oniciu, L. Mureşan, J. Appl. Electrochem. 1991, 21, 565–574.
- 37
- 37aL. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, C. Wang, Angew. Chem. Int. Ed. 2016, 55, 7136–7141;
- 37bM. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, Adv. Mater. 2022, 34, 2201744.
- 38L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang, F. Kang, Energy Storage Mater. 2018, 13, 96–102.
- 39X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J. Liu, P. Rao, Z. Guo, Adv. Mater. 2021, 33, 2007416.