P-type Polymers in Semitransparent Organic Photovoltaics
Dr. Weibo Kong
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Dr. Jiayu Wang
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYingyue Hu
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorProf. Ningbo Cui
State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Cenqi Yan
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorProf. Xufu Cai
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Pei Cheng
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Weibo Kong
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Dr. Jiayu Wang
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYingyue Hu
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorProf. Ningbo Cui
State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Cenqi Yan
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorProf. Xufu Cai
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Pei Cheng
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorGraphical Abstract
Semitransparent organic photovoltaics combine the functions of photovoltaic conversion and visual semitransparency. The p-type polymers used in semitransparent organic photovoltaics are systematically summarized from the perspectives of chemical structures, conformation structures, and aggregation structures. The design guidelines for novel p-type polymers in high-performance semitransparent organic photovoltaics are also proposed.
Abstract
P-type polymers are polymeric semiconducting materials that conduct holes and have extensive applications in optoelectronics such as organic photovoltaics. Taking the advantage of intrinsic discontinuous light absorption of organic semiconductors, semitransparent organic photovoltaics (STOPVs) present compelling opportunities in various potential applications such as building-integrated photovoltaics, agrivoltaics, automobiles, and wearable electronics. The characteristics of p-type polymers, including optical, electronic, and morphological properties, determine the performance of STOPVs, and the requirements for p-type polymers differ between opaque organic photovoltaics and STOPVs. Hence, in this Minireview, recent advances of p-type polymers used in STOPVs are systematically summarized, with emphasis on the effects of chemical structures, conformation structures, and aggregation structures of p-type polymers on the performance of STOPVs. Furthermore, new design concepts and guidelines are also proposed for p-type polymers to facilitate the future development of high-performance STOPVs.
Conflict of interest
The authors declare no competing interests.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1Y. Li, Acc. Chem. Res. 2012, 45, 723–733.
- 2G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153–161.
- 3Y. Chen, X. Wan, G. Long, Acc. Chem. Res. 2013, 46, 2645–2655.
- 4H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Chem. Rev. 2016, 116, 7397–7457.
- 5O. Inganäs, Adv. Mater. 2018, 30, 1800388.
- 6Y. Hu, J. Wang, C. Yan, P. Cheng, Nat. Rev. Mater. 2022, 7, 836–838.
- 7L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666–12731.
- 8H. Hu, P. Chow, G. Zhang, T. Ma, J. Liu, G. Yang, H. Yan, Acc. Chem. Res. 2017, 50, 2519–2528.
- 9P. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142.
- 10J. Wang, X. Zhan, Acc. Chem. Res. 2021, 54, 132–143.
- 11C. J. Brabec, M. Heeney, I. McCullochb, J. Nelson, Chem. Soc. Rev. 2011, 40, 1185–1199.
- 12F. Liu, Y. Gu, X. Shen, S. Ferdous, H. Wang, T. P. Russell, Prog. Polym. Sci. 2013, 38, 1990–2052.
- 13H. B. Naveed, K. Zhou, W. Ma, Acc. Chem. Res. 2019, 52, 2904–2915.
- 14G. Wang, M. A. Adil, J. Zhang, Z. Wei, Adv. Mater. 2019, 31, 1805089.
- 15S. Guo, Y. Hu, M. Qin, J. Li, Y. Wang, J. Qin, P. Cheng, Mater. Horiz. 2022, 9, 2097–2108.
- 16Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171–184.
- 17H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang, X. Lu, P. Cheng, Chem. Soc. Rev. 2023, 52, 4132–4148.
- 18N. C. Davy, M. Sezen-Edmonds, J. Gao, X. Lin, A. Liu, N. Yao, A. Kahn, Y. Loo, Nat. Energy 2017, 2, 17104.
- 19S. Chang, P. Cheng, G. Li, Y. Yang, Joule 2018, 2, 1039–1054.
- 20Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791.
- 21Q. Tai, F. Yan, Adv. Mater. 2017, 29, 1700192.
- 22C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.
- 23J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119–128.
- 24J. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Nat. Energy 2018, 3, 720–731.
- 25J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Chem. Rev. 2022, 6, 614–634.
- 26J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue, Y. Song, Z. Du, M. Ren, F. Huang, Adv. Energy Mater. 2022, 12, 2200453.
- 27L. Ye, S. Zhang, L. Huo, M. Zhang, J. Hou, Acc. Chem. Res. 2014, 47, 1595–1603.
- 28C. Chen, L. Dou, R. Zhu, C. Chung, T. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, Y. Yang, ACS Nano 2012, 6, 7185–7190.
- 29K. Chen, J. Salinas, H. Yip, L. Huo, J. Hou, A. K. Y. Jen, Energy Environ. Sci. 2012, 5, 9551–9557.
- 30X. Wang, K. Zhu, X. Jing, Q. Wang, F. Li, L. Yu, M. Sun, ACS Appl. Energ. Mater. 2020, 3, 915–922.
- 31X. Wang, Y. Yao, X. Jing, F. Li, L. Yu, Y. Hao, M. Sun, J. Mater. Chem. C 2019, 7, 10868–10875.
- 32S. Liao, H. Jhuo, Y. Cheng, S. Chen, Adv. Mater. 2013, 25, 4766–4771.
- 33L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697–9702.
- 34W. Liu, S. Sun, S. Xu, H. Zhang, Y. Zheng, Z. Wei, X. Zhu, Adv. Mater. 2022, 34, 2200337.
- 35W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang, J. Hou, F. Liu, S. Xu, X. Zhu, Angew. Chem. Int. Ed. 2022, 61, 202116111.
- 36A. Siddiqui, Suman, S. P. Singh, Mater. Chem. Front. 2021, 5, 7724–7736.
- 37Y. Zhang, J. Zou, H. Yip, K. Chen, D. F. Zeigler, Y. Sun, A. K. Y. Jen, Chem. Mater. 2011, 23, 2289–2291.
- 38C. C. Chueh, S. C. Chien, H. L. Yip, J. F. Salinas, C. Z. Li, K. S. Chen, F. C. Chen, W. C. Chen, A. K. Y. Jen, Adv. Energy Mater. 2013, 3, 417–423.
- 39C. Y. Chang, L. J. Zuo, H. L. Yip, C. Z. Li, Y. Li, C. Hsu, Y. J. Cheng, H. Chen, A. K. Jen, Adv. Energy Mater. 2014, 4, 1301645.
- 40Z. Hao, A. Iqbal, Chem. Soc. Rev. 1997, 26, 203–213.
- 41T. Beyerlein, B. Tieke, Macromol. Rapid Commun. 2000, 21, 182–189.
- 42L. Dou, J. You, J. Yang, C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photonics 2012, 6, 180–185.
- 43L. Dou, W. Chang, J. Gao, C. Chen, J. You, Y. Yang, Adv. Mater. 2013, 25, 825–831.
- 44C. Chen, L. Dou, J. Gao, W. Chang, G. Li, Y. Yang, Energy Environ. Sci. 2013, 6, 2714–2720.
- 45L. Dou, C. Chen, K. Yoshimura, K. Ohya, W. Chang, J. Gao, Y. Liu, E. Richard, Y. Yang, Macromolecules 2013, 46, 3384–3390.
- 46Y. Song, S. Chang, S. Gradecak, J. Kong, Adv. Energy Mater. 2016, 6, 1600847.
- 47D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. G. Brabec, Adv. Mater. 2006, 18, 2884–2889.
- 48S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, J. Am. Chem. Soc. 2012, 134, 14932–14944.
- 49Y. Zhang, J. Zou, C. Cheuh, H. Yip, A. K. Y. Jen, Macromolecules 2012, 45, 5427–5435.
- 50C. Y. Chang, L. Zuo, H. L. Yip, Y. J. Cheng, H. Chen, A. K. Y. Jen, Adv. Funct. Mater. 2013, 23, 5048–5090.
- 51J. Hou, H. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144–16145.
- 52A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede, U. Lemmer, Adv. Energy Mater. 2011, 1, 599–603.
- 53S. Subramaniyan, H. Xin, F. S. Kim, S. Shoaee, J. R. Durrant, S. A. Jenekhe, Adv. Energy Mater. 2011, 1, 854–860.
- 54H. Xin, S. Subramaniyan, T. Kwon, S. Shoaee, J. R. Durrant, S. A. Jenekhe, Chem. Mater. 2012, 24, 1995–2001.
- 55S. Wang, T. Chen, S. Li, L. Ye, Y. Fu, X. Lu, H. Zhu, L. Zuo, M. Shi, H. Chen, J. Mater. Chem. A 2023, 11, 6997–7005.
- 56Z. Ding, J. Kettle, M. Horie, S. W. Chang, G. C. Smith, A. I. Shames, E. A. Katz, J. Mater. Chem. A 2016, 4, 7274–7280.
- 57X. Huang, Y. Cheng, Y. Fang, L. Zhang, X. Hu, S. Y. Jeong, H. Zhang, H. Y. Woo, F. Wu, L. Chen, Energy Environ. Sci. 2022, 15, 4776–4788.
- 58Y. Chang, X. Zhu, L. Zhu, Y. Wang, C. Yang, X. Gu, Y. Zhang, J. Zhang, K. Lu, X. Sun, Z. Wei, Nano Energy 2021, 86, 106098.
- 59X. Lu, L. Cao, X. Du, H. Lin, C. Zheng, Z. Chen, B. Sun, S. Tao, Adv. Opt. Mater. 2021, 9, 2100064.
- 60X. Huang, L. Zhang, Y. Cheng, J. Oh, C. Li, B. Huang, L. Zhao, J. Deng, Y. Zhang, Z. Liu, F. Wu, X. Hu, C. Yang, L. Chen, Y. Chen, Adv. Funct. Mater. 2022, 32, 2108634.
- 61P. Cheng, H. C. Wang, Y. Zhu, R. Zheng, T. Li, C. H. Chen, T. Huang, Y. Zhao, R. Wang, D. Meng, Y. Li, C. Zhu, K. H. Wei, X. Zhan, Y. Yang, Adv. Mater. 2020, 32, 2003891.
- 62Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai, L. Zhang, Z. Li, Y. Wang, W. Ma, Y. Chen, Y. Sun, Adv. Funct. Mater. 2018, 28, 1800627.
- 63N. Schopp, G. Akhtanova, P. Panoy, A. Arbuz, S. Chae, A. Yi, H. J. Kim, V. Promarak, T. Q. Nguyen, V. V. Brus, Adv. Mater. 2022, 34, 2203796.
- 64S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo, H. Chen, Adv. Mater. 2022, 34, 2205844.
- 65Z. Hu, Z. Wang, F. Zhang, J. Mater. Chem. A 2019, 7, 7025–7032.
- 66Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye, X. Feng, H. L. Yip, F. Liu, G. Lu, S. Tan, Y. Sun, Adv. Funct. Mater. 2020, 30, 2002181.
- 67N. Yao, Y. Xia, Y. Liu, S. Chen, M. P. Jonsson, F. Zhang, ACS Appl. Energ. Mater. 2021, 4, 14335–14341.
- 68C. Xu, K. Jin, Z. Xiao, Z. Zhao, X. Ma, X. Wang, J. Li, W. Xu, S. Zhang, L. Ding, F. Zhang, Adv. Funct. Mater. 2021, 31, 2107934.
- 69H. Zhang, G. Wicht, C. Gretener, M. Nagel, F. Nüesch, Y. Romanyuk, J. Tisserant, R. Hany, Sol. Energy Mater. Sol. C 2013, 118, 157–164.
- 70Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2020, 12, 18473–18481.
- 71H. C. Wang, P. Cheng, S. Tan, C. H. Chen, B. Chang, C. S. Tsao, L. Y. Chen, C. A. Hsieh, Y. C. Lin, H. W. Cheng, Y. Yang, K. H. Wei, Adv. Energy Mater. 2021, 11, 2170050.
- 72X. Wang, X. Zhai, X. Jing, C. Gao, Y. He, L. Yu, M. Sun, Chem. Eng. J. 2022, 427, 132048.
- 73D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li, L. Zhan, H. Zhu, X. Lu, H. Yip, H. Chen, C. Li, Adv. Mater. 2020, 32, 2001621.
- 74P. Yin, Z. Yin, Y. Ma, Q. Zheng, Energy Environ. Sci. 2020, 13, 5177–5185.
- 75X. Wang, X. Zhai, X. Kang, X. Ding, C. Gao, X. Jing, L. Yu, M. Sun, Solar RRL 2022, 6, 2200070.