Polyoxometalate-Cyclodextrin-Based Cluster-Organic Supramolecular Framework for Polysulfide Conversion and Guest–Host Recognition in Lithium-sulfur Batteries
Corresponding Author
Prof. Lubin Ni
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Funding acquisition (lead), Methodology (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorJie Gu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead)
Search for more papers by this authorXinyuan Jiang
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Resources (equal), Software (equal)
Search for more papers by this authorHongjie Xu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Investigation (equal), Software (equal)
Search for more papers by this authorZhen Wu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Investigation (equal), Software (equal), Validation (equal), Visualization (equal)
Search for more papers by this authorYuchao Wu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Search for more papers by this authorYi Liu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Validation (equal), Visualization (equal)
Search for more papers by this authorProf. Ju Xie
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Methodology (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Prof. Yongge Wei
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Conceptualization (equal), Project administration (equal), Resources (equal), Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Guowang Diao
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Resources (lead), Supervision (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Lubin Ni
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Funding acquisition (lead), Methodology (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorJie Gu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead)
Search for more papers by this authorXinyuan Jiang
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Resources (equal), Software (equal)
Search for more papers by this authorHongjie Xu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Investigation (equal), Software (equal)
Search for more papers by this authorZhen Wu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Data curation (equal), Investigation (equal), Software (equal), Validation (equal), Visualization (equal)
Search for more papers by this authorYuchao Wu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Search for more papers by this authorYi Liu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Validation (equal), Visualization (equal)
Search for more papers by this authorProf. Ju Xie
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Methodology (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Prof. Yongge Wei
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Conceptualization (equal), Project administration (equal), Resources (equal), Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Guowang Diao
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
Contribution: Resources (lead), Supervision (equal), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
Polyoxometalate-cyclodextrin cluster-organic supramolecular framework (POM-CD-COSF)-based battery separator as an ideal lightweight barrier (ca. 0.3 mg cm−2) was first directly involved in the lithium-sulfur battery (Li−S) system to suppress the polysulfide shuttle effect through supramolecularly recognizing polysulfide guests and then catalyzing their conversion while simultaneously accelerating Li+ ions diffusion.
Abstract
Developing polyoxometalate-cyclodextrin cluster-organic supramolecular framework (POM-CD-COSF) still remains challenging due to an extremely difficult task in rationally interconnecting two dissimilar building blocks. Here we report an unprecedented POM-CD-COSF crystalline structure produced through the self-assembly process of a Krebs-type POM, [Zn2(WO2)2(SbW9O33)2]10−, and two β-CD units. The as-prepared POM-CD-COSF-based battery separator can be applied as a lightweight barrier (approximately 0.3 mg cm−2) to mitigate the polysulfide shuttle effect in lithium-sulfur batteries. The designed Li−S batteries equipped with the POM-CD-COSF modified separator exhibit remarkable electrochemical performance, attributed to fast Li+ diffusion through the supramolecular channel of β-CD, efficient polysulfide-capture ability by the dynamic host–guest interaction of β-CD, and improved sulfur redox kinetics by the bidirectional catalysis of POM cluster. This research provides a broad perspective for the development of multifunctional supramolecular POM frameworks and their applications in Li−S batteries.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202306528-sup-0001-1941279.cif3.6 MB | Supporting Information |
anie202306528-sup-0001-misc_information.pdf5.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751–11787;
- 1bQ. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
- 2
- 2aL. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, Y. Zhang, J. Am. Chem. Soc. 2011, 133, 18522–18525;
- 2bC.-P. Yang, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2015, 137, 2215–2218;
- 2cT. Yang, J. Zhong, J. Liu, Y. Yuan, D. Yang, Q. Mao, X. Li, Z. Guo, Adv. Funct. Mater. 2021, 31, 2009433.
- 3W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, H. D. Abruña, J. Am. Chem. Soc. 2013, 135, 16736–16743.
- 4
- 4aZ. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331;
- 4bY. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi, X. Wang, J. Chen, Z.-S. Wu, ACS Nano 2018, 12, 2381–2388;
- 4cZ. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519–527;
- 4dJ. Jiang, J. Zhu, W. Ai, X. Wang, Y. Wang, C. Zou, W. Huang, T. Yu, Nat. Commun. 2015, 6, 8622;
- 4eM. Li, Y. Wan, J.-K. Huang, A. H. Assen, C.-E. Hsiung, H. Jiang, Y. Han, M. Eddaoudi, Z. Lai, J. Ming, L.-J. Li, ACS Energy Lett. 2017, 2, 2362–2367.
- 5
- 5aL. Ni, Z. Wu, G. Zhao, C. Sun, C. Zhou, X. Gong, G. Diao, Small 2017, 13, 1603466;
- 5bL. Ni, G. Zhao, G. Yang, G. Niu, M. Chen, G. Diao, ACS Appl. Mater. Interfaces 2017, 9, 34793–34803.
- 6Z.-J. Zheng, H. Ye, Z.-P. Guo, Energy Environ. Sci. 2021, 14, 1835–1853.
- 7
- 7aG. Babu, N. Masurkar, H. Al Salem, L. M. R. Arava, J. Am. Chem. Soc. 2017, 139, 171–178;
- 7bJ. He, A. Manthiram, Energy Storage Mater. 2019, 20, 55–70.
- 8
- 8aL. Zhou, D. L. Danilov, F. Qiao, J. Wang, H. Li, R−A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2022, 12, 2202094;
- 8bM. Du, P. Geng, C. Pei, X. Jiang, Y. Shan, W. Hu, L. Ni, H. Pang, Angew. Chem. Int. Ed. 2022, 61, e202209350.
- 9
- 9aZ. Ma, Y. Liu, J. Gautam, W. Liu, A. N. Chishti, J. Gu, G. Yang, Z. Wu, J. Xie, M. Chen, L. Ni, G. Diao, Small 2021, 17, 2102710;
- 9bY. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li, J. Gu, J. Gautam, X. Gong, A. N. Chishti, S. Q. Duan, C. Chen, M. Chen, L. Ni, G. Diao, Adv. Funct. Mater. 2022, 32, 2109462.
- 10
- 10aS.-S. Wang, G.-Y. Yang, Chem. Rev. 2015, 115, 4893–4962;
- 10bH.-L. Li, M. Zhang, C. Lian, Z.-L. Lang, H. Lv, G.-Y. Yang, CCS Chem. 2020, 2, 2095–2103.
- 11
- 11aY.-F. Liu, C.-W. Hu, G.-P. Yang, Chin. Chem. Lett. 2023, 34, 108097;
- 11bZ. Xia, L. Wang, Q. Zhang, F. Li, L. Xu, Polyoxometalates 2022, 1, 9140001.
10.26599/POM.2022.9140001 Google Scholar
- 12
- 12aY. Wang, Y. Lu, W. Zhang, T. Dang, Y. Yang, X. Bai, S. Liu, Polyoxometalates 2022, 1, 9140005;
10.26599/POM.2022.9140005 Google Scholar
- 12bY.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Energy Environ. Sci. 2017, 10, 788–798;
- 12cK. Yang, Y. Hu, T. Zhang, B. Wang, J. Qin, N. Li, Z. Zhao, J. Zhao, D. Chao, Adv. Energy Mater. 2022, 12, 2202671.
- 13
- 13aY. Huang, J. Ge, J. Hu, J. Zhang, J. Hao, Y. Wei, Adv. Energy Mater. 2018, 8, 1701601;
- 13bH. Zhao, L. Tao, F. Zhang, Y. Zhang, Y. Liu, H. Xu, G. Diao, L. Ni, Chem. Commun. 2019, 55, 1096–1099;
- 13cL. Yue, S. Wang, D. Zhou, H. Zhang, B. Li, L. Wu, Nat. Commun. 2016, 7, 10742;
- 13dJ. Jia, Y. Niu, P. Zhang, D. Zhang, P. Ma, C. Zhang, J. Niu, J. Wang, Inorg. Chem. 2017, 56, 10131–10134.
- 14Y. Zhang, J. Liu, S.-L. Li, Z.-M. Su, Y.-Q. Lan, EnergyChem 2019, 1, 10021.
- 15
- 15aJ. C. Ye, J. J. Chen, R. M. Yuan, D. R. Deng, M. S. Zheng, L. Cronin, Q. F. Dong, J. Am. Chem. Soc. 2018, 140, 3134–3138;
- 15bJ. Lei, X.-X. Fan, T. Liu, P. Xu, Q. Hong, K. Li, R.-M. Yuan, M.-S. Zheng, Q.-F. Dong, J.-J. Chen, Nat. Commun. 2022, 13, 202.
- 16
- 16aW. Yao, L. Liu, X. Wu, C. Qin, H. Xie, Z. Su, ACS Appl. Mater. Interfaces 2018, 10, 35911–35918;
- 16bY. Yu, T. Li, H. Zhang, Y. Luo, H. Zhang, J. Zhang, J. Yan, X. Li, Nano Energy 2020, 71, 104596;
- 16cL. Ni, G. Yang, Y. Liu, Z. Wu, Z, Ma, C. Shen, Z. X. Lv, Q. Wang, X. Gong, J. Xie, G. Diao, Y. Wei, ACS Nano 2021, 15, 12222–12236.
- 17P. Yang, W. Zhao, A. Shkurenko, Y. Belmabkhout, M. Eddaoudi, X. Dong, H. N. Alshareef, N. M. Khashab, J. Am. Chem. Soc. 2019, 141, 1847–1851.
- 18
- 18aF. Huang, L. Isaacs, Acc. Chem. Res. 2014, 47, 1923–1924;
- 18bY. Liu, Y. Chen, Acc. Chem. Res. 2006, 39, 681–691.
- 19
- 19aJ. Xie, H.-J. Peng, J.-Q. Huang, W.-T. Xu, X. Chen, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 16223–16227;
- 19bJ. Wang, Z. Yao, C. W. Monroe, J. Yang, Y. Nuli, Adv. Funct. Mater. 2013, 23, 1194–1201;
- 19cL. Ni, G. Yang, Q. Wang, S. Duan, C. Shen, J. Xie, G. Niu, H. Li, M. Chen, G. Diao, Energy Storage Mater. 2019, 21, 378–389;
- 19dM. E. Davis, M. E. Brewster, Nat. Rev. Drug Discovery 2004, 3, 1023–1035.
- 20P. Li, G. Chen, N. Zhang, R. Ma, X. Liu, Energy Environ. Mater. 2021, 4, 72–80.
- 21G. Izzet, M. Ménand, B. Matt, S. Renaudineau, L.-M. Chamoreau, M. Sollogoub, A. Proust, Angew. Chem. Int. Ed. 2012, 51, 487–490.
- 22
- 22aL. Ni, H. Li, H. Xu, C. Shen, R. Liu, J. Xie, F. Zhang, C. Chen, H. Zhao, T. Zuo, G. Diao, ACS Appl. Mater. Interfaces 2019, 11, 38708–38718;
- 22bZ. Wei, Z. Wu, S. Ru, L. Ni, Y. Wei, Chem. J. Chin. Univ. 2022, 43, 20210665;
- 22cS. Khlifi, J. Marrot, M. Haouas, W. E. Shepard, C. Falaise, E. Cadot, J. Am. Chem. Soc. 2022, 144, 4469–4477.
- 23
- 23aY. Wu, R. Shi, Y.-L. Wu, J. M. Holcroft, Z. Liu, M. Frasconi, M. R. Wasielewski, H. Li, J. F. Stoddart, J. Am. Chem. Soc. 2015, 137, 4111–4118;
- 23bM. A. Moussawi, N. Leclerc-Laronze, S. Floquet, P. A. Abramov, M. N. Sokolov, S. Cordier, A. Ponchel, E. Monflier, H. Bricout, D. Landy, M. Haouas, J. Marrot, E. Cadot, J. Am. Chem. Soc. 2017, 139, 12793–12803.
- 24I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244–247.
- 25
- 25aL. Ni, J. Patscheider, K. K. Baldridge, G. R. Patzke, Chem. Eur. J. 2012, 18, 13293–13298;
- 25bS. Liu, D. G. Kurth, D. Volkmer, Chem. Commun. 2002, 976–977.
- 26F. Y. Xie, L. Gong, X. Liu, Y. T. Tao, W.-H. Zhang, S.-H. Chen, H. Meng, J. Chen, J. Electron Spectrosc. Relat. Phenom. 2012, 185, 112–118.
- 27B. Qiao, G. Leverick, W. Zhao, A. Flood, J. Johnson, Y. Shao-Horn, J. Am. Chem. Soc. 2018, 140, 10932–10936.
- 28C. Barchasz, F. Molton, C. Duboc, J.-C. Leprêtre, S. Patoux, F. Alloin, Anal. Chem. 2012, 84, 3973–3980.
- 29Z. F. Deng, Z. A. Zhang, Y. Q. Lai, J. Liu, J. Li, Y. X. Liu, J. Electrochem. Soc. 2013, 160, A553–A558.
- 30M. Liu, P. Chen, X. Pan, S. Pan, X. Zhang, Y. Zhou, M. Bi, J. Sun, S. Yang, A. L. Vasiliev, P. J. Kulesza, X. Ouyang, J. Xu, X. Wang, J. Zhu, Y. Fu, Adv. Funct. Mater. 2022, 32, 2205031.
- 31Deposition number 1941279 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.