Perovskite Scintillators for Improved X-ray Detection and Imaging
Yumin Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorMing Li
Radiotherapy Center of the Second People's Hospital of Lianyungang, Lianyungang, 222000 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Zhifang Chai
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yaxing Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYumin Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorMing Li
Radiotherapy Center of the Second People's Hospital of Lianyungang, Lianyungang, 222000 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Zhifang Chai
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yaxing Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGraphical Abstract
Halide perovskites have emerged as competitive scintillators for X-ray detection and imaging owing to their intrinsic characteristics. This minireview summarizes strategies for improving the light yield of halide perovskite scintillators and offers a roadmap for advancing the X-ray imaging performance. Additionally, methods for controlling the light propagation direction in halide perovskite scintillators are highlighted for improving X-ray imaging resolution.
Abstract
Halide perovskites (HPs) recently have emerged as one class of competitive scintillators for X-ray detection and imaging owing to its high quantum efficiency, short decay time, superior X-ray absorption capacity, low cost, and ease of crystal growth. The tunable structure and versatile chemical compositions of halide perovskites provide distinguishable advantages over traditional inorganic scintillators for optimizing scintillation performance. Since the first observation of the scintillation phenomenon in HPs, substantial efforts have been devoted to expanding the inventory of HP scintillators and regulating material properties. Understanding the relationship between the structure and scintillation properties of HP scintillators is essential for developing materials with improved X-ray detection and imaging capacities. This review summarizes strategies for improving the light yield of HP scintillators and provides a roadmap for improving the X-ray imaging performance. Additionally, methods for controlling the light propagation direction in HP scintillators are highlighted for improving X-ray imaging resolution. Finally, we highlight the current challenge in HP scintillators and provide a perspective on the future development of this emerging scintillator.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1
- 1aB. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, J. Mater. Res. 2008, 23, 2561–2581;
- 1bL. Goldgefter, V. Toder, Science 1977, 195, 208;
- 1cM. Tegze, G. Faigel, Nature 1996, 380, 49–51;
- 1dP. Büchele, M. Richter, S. F. Tedde, G. J. Matt, G. N. Ankah, R. Fischer, M. Biele, W. Metzger, S. Lilliu, O. Bikondoa, J. E. Macdonald, C. J. Brabec, T. Kraus, U. Lemmer, O. Schmidt, Nat. Photonics 2015, 9, 843–848;
- 1eM. Nikl, A. Yoshikawa, Adv. Opt. Mater. 2015, 3, 463–481;
- 1fW. Wang, J. Lu, X. Xu, B. Li, J. Gao, M. Xie, S. Wang, F. Zheng, G. Guo, Chem. Eng. J. 2022, 430, 133010;
- 1gJ. Gao, J. Lu, B. Li, W. Wang, M. Xie, S. Wang, F. Zheng, G. Guo, Chin. Chem. Lett. 2022, 33, 5132–5136;
- 1hJ. Lu, S. H. Wang, Y. Li, W. F. Wang, C. Sun, P. X. Li, F. K. Zheng, G. C. Guo, Dalton Trans. 2020, 49, 7309–7314.
- 2A. Jana, S. Cho, S. A. Patil, A. Meena, Y. Jo, V. G. Sree, Y. Park, H. Kim, H. Im, R. A. Taylor, Mater. Today 2022, 55, 110–136.
- 3H. Hall, Rev. Mod. Phys. 1936, 8, 358–397.
- 4P. Lecoq, IEEE Transactions on Radiation and Plasma Medical Sciences 2017, 1, 473–485.
- 5
- 5aG. F. Knoll, Radiation Detection and Measurement, Wiley, Hoboken, 2010;
- 5bJ. D. Valentine, D. K. Wehe, G. F. Knoll, C. E. Moss, IEEE Trans. Nucl. Sci. 1993, 40, 1267–1274.
- 6M. Laval, M. Moszyński, R. Allemand, E. Cormoreche, P. Guinet, R. Odru, J. Vacher, Nucl. Instrum. Methods Phys. Res. 1983, 206, 169–176.
- 7M. Kapusta, J. Pawelke, M. Moszyński, Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 404, 413–417.
- 8
- 8aG. Blasse, Chem. Mater. 1994, 6, 1465–1475;
- 8bY. Zhou, J. Chen, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2021, 6, 739–768.
- 9H. Chen, Y. Li, B. Zhao, J. Ming, D. Xue, Nano Futures 2022, 6, 012001.
- 10J. H. Heo, D. H. Shin, J. K. Park, D. H. Kim, S. J. Lee, S. H. Im, Adv. Mater. 2018, 30, 1801743.
- 11G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, K. Petridis, Adv. Sci. 2020, 7, 2002098.
- 12
- 12aQ. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 2018, 561, 88–93;
- 12bM. D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci, Sci. Rep. 2016, 6, 37254;
- 12cN. Kawano, M. Koshimizu, G. Okada, Y. Fujimoto, N. Kawaguchi, T. Yanagida, K. Asai, Sci. Rep. 2017, 7, 14754;
- 12dB. Yang, L. Yin, G. Niu, J. H. Yuan, K. H. Xue, Z. Tan, X. S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, J. Tang, Adv. Mater. 2019, 31, 1904711.
- 13M. Gandini, I. Villa, M. Beretta, C. Gotti, M. Imran, F. Carulli, E. Fantuzzi, M. Sassi, M. Zaffalon, C. Brofferio, L. Manna, L. Beverina, A. Vedda, M. Fasoli, L. Gironi, S. Brovelli, Nat. Nanotechnol. 2020, 15, 462–468.
- 14A. Xie, T. H. Nguyen, C. Hettiarachchi, M. E. Witkowski, W. Drozdowski, M. D. Birowosuto, H. Wang, C. Dang, J. Phys. Chem. C 2018, 122, 16265–16273.
- 15K. Shibuya, M. Koshimizu, H. Murakami, Y. Muroya, Y. Katsumura, K. Asai, Jpn. J. Appl. Phys. 2004, 43, L1333.
- 16K. Shibuya, M. Koshimizu, K. Asai, H. Shibata, Appl. Phys. Lett. 2004, 84, 4370–4372.
- 17G. C. Papavassiliou, Prog. Solid State Chem. 1997, 25, 125–270.
- 18X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev, M. Yuan, R. Comin, D. McCamant, S. O. Kelley, E. H. Sargent, Nat. Mater. 2018, 17, 550–556.
- 19L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171–1190.
- 20A. Xie, F. Maddalena, M. E. Witkowski, M. Makowski, B. Mahler, W. Drozdowski, S. V. Springham, P. Coquet, C. Dujardin, M. D. Birowosuto, C. Dang, Chem. Mater. 2020, 32, 8530–8539.
- 21A. Xie, C. Hettiarachchi, F. Maddalena, M. E. Witkowski, M. Makowski, W. Drozdowski, A. Arramel, A. T. S. Wee, S. V. Springham, P. Q. Vuong, H. J. Kim, C. Dujardin, P. Coquet, M. D. Birowosuto, C. Dang, Commun. Mater. 2020, 1, 37.
- 22A. Datta, J. Fiala, S. Motakef, Sci. Rep. 2021, 11, 22897.
- 23J. Cao, Z. Guo, S. Zhu, Y. Fu, H. Zhang, Q. Wang, Z. Gu, ACS Appl. Mater. Interfaces 2020, 12, 19797–19804.
- 24
- 24aM. Kobayashi, K. Omata, S. Sugimoto, Y. Tamagawa, T. Kuroiwa, H. Asada, H. Takeuchi, S. Kondo, Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 592, 369–373;
- 24bV. B. Mykhaylyk, H. Kraus, V. Kapustianyk, H. J. Kim, P. Mercere, M. Rudko, P. Da Silva, O. Antonyak, M. Dendebera, Sci. Rep. 2020, 10, 8601.
- 25F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent, Science 2021, 373, eaaz8541.
- 26W. Chen, Y. Liu, Z. Yuan, Z. Xu, Z. Zhang, K. Liu, Z. Jin, X. Tang, J. Radioanal. Nucl. Chem. 2017, 314, 2327–2337.
- 27G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635–5640.
- 28Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen, Y. Ding, L. J. Xu, L. Liu, Y. Han, A. V. Malko, X. Liu, H. Yang, O. M. Bakr, H. Liu, O. F. Mohammed, ACS Nano 2019, 13, 2520–2525.
- 29
- 29aD. Onoda, M. Akatsuka, N. Kawano, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida, J. Mater. Sci. Mater. Electron. 2020, 31, 20798–20804;
- 29bD. Onoda, M. Akatsuka, N. Kawano, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida, J. Lumin. 2021, 237, 118157;
- 29cD. Onoda, M. Akatsuka, N. Kawano, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida, Opt. Mater. 2021, 114, 111002;
- 29dD. Onoda, M. Akatsuka, N. Kawano, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida, Jpn. J. Appl. Phys. 2022, 61, SB1041;
- 29eM. Akatsuka, N. Kawano, T. Kato, D. Nakauchi, G. Okada, N. Kawaguchi, T. Yanagida, Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 954, 161372.
- 30W. Ma, T. Jiang, Z. Yang, H. Zhang, Y. Su, Z. Chen, X. Chen, Y. Ma, W. Zhu, X. Yu, H. Zhu, J. Qiu, X. Liu, X. Xu, Y. M. Yang, Adv. Sci. 2021, 8, 2003728.
- 31Z. Wang, X. Xu, S. Wang, H. Xu, W. Xu, Q. Zeng, G. Deng, Y. Jiang, S. Wu, Chem. Eur. J. 2021, 27, 9071–9076.
- 32
- 32aR. T. Williams, W. W. Wolszczak, X. Yan, D. L. Carroll, ACS Nano 2020, 14, 5161–5169;
- 32bX. Li, C. Meng, B. Huang, D. Yang, X. Xu, H. Zeng, Adv. Opt. Mater. 2020, 8, 2000273.
- 33J. Zhou, K. An, P. He, J. Yang, C. Zhou, Y. Luo, W. Kang, W. Hu, P. Feng, M. Zhou, X. Tang, Adv. Opt. Mater. 2021, 9, 2002144.
- 34W. Zhu, W. Ma, Y. Su, Z. Chen, X. Chen, Y. Ma, L. Bai, W. Xiao, T. Liu, H. Zhu, X. Liu, H. Liu, X. Liu, Y. M. Yang, Light: Sci. Appl. 2020, 9, 112.
- 35K. A. Dagnall, A. M. Conley, L. U. Yoon, H. S. Rajeev, S. H. Lee, J. J. Choi, ACS Omega 2022, 7, 20968–20974.
- 36Q. Hu, Z. Deng, M. Hu, A. Zhao, Y. Zhang, Z. Tan, G. Niu, H. Wu, J. Tang, Sci. China Chem. 2018, 61, 1581–1586.
- 37S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu, S. Hong, J. J. Lee, S. Cha, E. B. Nam, S. U. Lee, S. K. Noh, H. Kim, J. Kwak, H. Im, Light: Sci. Appl. 2020, 9, 156.
- 38
- 38aS. Cheng, A. Beitlerova, R. Kucerkova, E. Mihokova, M. Nikl, Z. Zhou, G. Ren, Y. Wu, ACS Appl. Mater. Interfaces 2021, 13, 12198–12202;
- 38bS. Cheng, M. Nikl, A. Beitlerova, R. Kucerkova, X. Du, G. Niu, Y. Jia, J. Tang, G. Ren, Y. Wu, Adv. Opt. Mater. 2021, 9, 2100460.
- 39M. D. Smith, H. I. Karunadasa, Acc. Chem. Res. 2018, 51, 619–627.
- 40M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, H. I. Karunadasa, Chem. Sci. 2017, 8, 4497–4504.
- 41C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark, B. Chen, L. J. van de Burgt, J. C. Wang, Y. Zhou, K. Hanson, Q. J. Meisner, J. Neu, T. Besara, T. Siegrist, E. Lambers, P. Djurovich, B. Ma, Chem. Sci. 2018, 9, 586–593.
- 42Z. Xiao, W. Meng, J. Wang, D. B. Mitzi, Y. Yan, Mater. Horiz. 2017, 4, 206–216.
- 43
- 43aW. Gao, G. Niu, L. Yin, B. Yang, J.-H. Yuan, D. Zhang, K.-H. Xue, X. Miao, Q. Hu, X. Du, J. Tang, ACS Appl. Electron. Mater. 2020, 2, 2242–2249;
- 43bX. Zhao, G. Niu, J. Zhu, B. Yang, J. H. Yuan, S. Li, W. Gao, Q. Hu, L. Yin, K. H. Xue, E. Lifshitz, X. Miao, J. Tang, J. Phys. Chem. Lett. 2020, 11, 1873–1880.
- 44
- 44aS. Cheng, A. Beitlerova, R. Kucerkova, M. Nikl, G. Ren, Y. Wu, Phys. Status Solidi RRL 2020, 14, 2000374;
- 44bL. Lian, M. Zheng, W. Zhang, L. Yin, X. Du, P. Zhang, X. Zhang, J. Gao, D. Zhang, L. Gao, G. Niu, H. Song, R. Chen, X. Lan, J. Tang, J. Zhang, Adv. Sci. 2020, 7, 2000195.
- 45T. He, Y. Zhou, X. Wang, J. Yin, L. Gutiérrez-Arzaluz, J.-X. Wang, Y. Zhang, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2022, 7, 2753–2760.
- 46F. Cao, D. Yu, W. Ma, X. Xu, B. Cai, Y. M. Yang, S. Liu, L. He, Y. Ke, S. Lan, K. L. Choy, H. Zeng, ACS Nano 2020, 14, 5183–5193.
- 47L. Yang, H. Zhang, M. Zhou, L. Zhao, W. Chen, T. Wang, X. Yu, D. Zhou, J. Qiu, X. Xu, J. Phys. Chem. Lett. 2020, 11, 9203–9209.
- 48
- 48aQ. Xu, J. Wang, W. Shao, X. Ouyang, X. Wang, X. Zhang, Y. Guo, X. Ouyang, Nanoscale 2020, 12, 9727–9732;
- 48bK. Děcká, A. Suchá, J. Král, I. Jakubec, M. Nikl, V. Jarý, V. Babin, E. Mihóková, V. Čuba, Nanomaterials 2021, 11, 1935.
- 49Z. J. Yong, S. Q. Guo, J. P. Ma, J. Y. Zhang, Z. Y. Li, Y. M. Chen, B. B. Zhang, Y. Zhou, J. Shu, J. L. Gu, L. R. Zheng, O. M. Bakr, H. T. Sun, J. Am. Chem. Soc. 2018, 140, 9942–9951.
- 50
- 50aH. Sabet, G. Prekas, M. Breen, H. B. Bhandari, P. Nickerson, G. Derderian, F. Robertson, H. Kudrolli, S. Cool, V. V. Nagarkar, IEEE Trans. Nucl. Sci. 2012, 59, 1841–1849;
- 50bA. Gola, A. Ferri, A. Tarolli, N. Zorzi, C. Piemonte, Phys. Med. Biol. 2014, 59, 3615–3635;
- 50cY. Y. Chang, C. R. Chen, P. Chen, J. J. Huang, M. A. Huang, T. C. Liu, J. W. Nam, M. Z. Wang, V. Bogomolov, S. Brandt, C. Budtz-Jørgensen, A. J. Castro-Tirado, H. S. Choi, P. H. Connell, C. Eyles, S. Jeong, J. E. Kim, M. B. Kim, S. W. Kim, J. Lee, H. Lim, K. W. Min, M. I. Panasyuk, I. H. Park, V. Petrov, V. Reglero, J. Řípa, J. M. Rodrigo, S. Svertilov, I. Yashin, Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 771, 55–65.
- 51M. Zhang, J. Zhu, B. Yang, G. Niu, H. Wu, X. Zhao, L. Yin, T. Jin, X. Liang, J. Tang, Nano Lett. 2021, 21, 1392–1399.
- 52M. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208440.
- 53
- 53aJ. V. Passarelli, C. M. Mauck, S. W. Winslow, C. F. Perkinson, J. C. Bard, H. Sai, K. W. Williams, A. Narayanan, D. J. Fairfield, M. P. Hendricks, W. A. Tisdale, S. I. Stupp, Nat. Chem. 2020, 12, 672–682;
- 53bH. Hu, F. Meier, D. Zhao, Y. Abe, Y. Gao, B. Chen, T. Salim, E. E. M. Chia, X. Qiao, C. Deibel, Y. M. Lam, Adv. Mater. 2018, 30, 1707621.
- 54L. Yi, B. Hou, H. Zhao, H. Q. Tan, X. Liu, Nat. Photonics 2023, 17, 494–500.
- 55M. Xia, Z. Xie, H. Wang, T. Jin, L. Liu, J. Kang, Z. Sang, X. Yan, B. Wu, H. Hu, J. Tang, G. Niu, Adv. Mater. 2023, 35, 2211769.