Stabilizing Liquids Using Interfacial Supramolecular Assemblies
Peiyang Gu
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorXiaobo Luo
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorShiyuan Zhou
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorDanfeng Wang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Zhongyu Li
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Yu Chai
Department of Physics, City University of Hong Kong, Kowloon, P. R. China
Search for more papers by this authorYuzhe Zhang
School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Shaowei Shi
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Thomas P. Russell
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003 USA
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577 Japan
Search for more papers by this authorPeiyang Gu
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorXiaobo Luo
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorShiyuan Zhou
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorDanfeng Wang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Zhongyu Li
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164 P. R. China
School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Yu Chai
Department of Physics, City University of Hong Kong, Kowloon, P. R. China
Search for more papers by this authorYuzhe Zhang
School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164 P. R. China
Search for more papers by this authorCorresponding Author
Shaowei Shi
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Thomas P. Russell
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003 USA
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577 Japan
Search for more papers by this authorGraphical Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices. Recent advances in structuring liquids based on non-covalent intermolecular interactions are highlighted and a perspective is provided on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure–property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1
- 1aD. Truzzolillo, S. Mora, C. Dupas, L. Cipelletti, Phys. Rev. X 2016, 6, 041057;
- 1bS. Hosseinpour, V. Götz, W. Peukert, Angew. Chem. Int. Ed. 2021, 60, 25143–25150;
- 1cM. Nagel, T. A. Tervoort, J. Vermant, Adv. Colloid Interface Sci. 2017, 247, 33–51.
- 2
- 2aJ. K. Hensel, A. P. Carpenter, R. K. Ciszewski, B. K. Schabes, C. T. Kittredge, F. G. Moore, G. L. Richmond, Proc. Natl. Acad. Sci. USA 2017, 114, 13351–13356;
- 2bL. D. Zarzar, V. Sresht, E. M. Sletten, J. A. Kalow, D. Blankschtein, T. M. Swager, Nature 2015, 518, 520–524;
- 2cY. Chen, S. Narayan, C. S. Dutcher, Langmuir 2020, 36, 14904–14923.
- 3
- 3aZ. Niroobakhsh, J. A. LaNasa, A. Belmonte, R. J. Hickey, Phys. Rev. Lett. 2019, 122, 178003;
- 3bA. Hutin, M. S. Carvalho, Langmuir 2022, 38, 10139–10149.
- 4
- 4aC. Huang, Z. Sun, M. Cui, F. Liu, B. A. Helms, T. P. Russell, Adv. Mater. 2016, 28, 6612–6618;
- 4bG. Luo, Y. Yu, Y. Yuan, X. Chen, Z. Liu, T. Kong, Adv. Mater. 2019, 31, 1904631;
- 4cM. A. Khan, M. F. Haase, Soft Matter 2021, 17, 2034–2041;
- 4dW.-S. Wei, Y. Xia, S. Ettinger, S. Yang, A. G. Yodh, Nature 2019, 576, 433–436;
- 4eJ. W. Tavacoli, J. H. J. Thijssen, A. B. Schofield, P. S. Clegg, Adv. Funct. Mater. 2011, 21, 2020–2027;
- 4fC. Agashe, R. Varshney, R. Sangwan, A. K. Gill, M. Alam, D. Patra, Langmuir 2022, 38, 8296–8303.
- 5
- 5aC. Huang, Y. Chai, Y. Jiang, J. Forth, P. D. Ashby, M. M. L. Arras, K. Hong, G. S. Smith, P. Yin, T. P. Russell, Nano Lett. 2018, 18, 2525–2529;
- 5bA. Toor, B. A. Helms, T. P. Russell, Nano Lett. 2017, 17, 3119–3125;
- 5cX. Liu, S. Shi, Y. Li, J. Forth, D. Wang, T. P. Russell, Angew. Chem. Int. Ed. 2017, 56, 12594–12598;
- 5dY.-L. Zhu, D. Wang, J.-L. Guan, Z.-Y. Sun, Z. Lu, Nanoscale 2022, 14, 3554–3560;
- 5eD. Popple, M. Shekhirev, C. Dai, P. Kim, K. X. Wang, P. Ashby, B. A. Helms, Y. Gogotsi, T. P. Russell, A. Zettl, Adv. Mater. 2023, 35, 2208148.
- 6
- 6aS. Shi, T. P. Russell, Adv. Mater. 2018, 30, 1800714;
- 6bS. Shi, B. Qian, X. Wu, H. Sun, H. Wang, H.-B. Zhang, Z.-Z. Yu, T. P. Russell, Angew. Chem. Int. Ed. 2019, 58, 18171–18176.
- 7
- 7aZ. Zhang, Y. Jiang, C. Huang, Y. Chai, E. Goldfine, F. Liu, W. Feng, J. Forth, T. E. Williams, P. D. Ashby, T. P. Russell, B. A. Helms, Sci. Adv. 2018, 4, eaap8045;
- 7bQ. Yuan, H. Xue, J. Lv, J. Wang, S. Shi, T. P. Russell, D. Wang, J. Phys. Chem. B 2020, 124, 4835–4842;
- 7cR. Xu, T. Liu, H. Sun, B. Wang, S. Shi, T. P. Russell, ACS Appl. Mater. Interfaces 2020, 12, 18116–18122;
- 7dJ. Forth, A. Mariano, Y. Chai, A. Toor, J. Hasnain, Y. Jiang, W. Feng, X. Liu, P. L. Geissler, N. Menon, B. A. Helms, P. D. Ashby, T. P. Russell, Nano Lett. 2021, 21, 7116–7122.
- 8S. Zhao, J.-Y. Zhang, Y. Fu, S. Zhu, H. C. Shum, X. Liu, Z. Wang, R. Ye, B. Z. Tang, T. P. Russell, Y. Chai, Nano Lett. 2022, 22, 5538–5543.
- 9M. Cui, T. Emrick, T. P. Russell, Science 2013, 342, 460–463.
- 10
- 10aJ. Forth, P. Y. Kim, G. Xie, X. Liu, B. A. Helms, T. P. Russell, Adv. Mater. 2019, 31, 1806370;
- 10bJ. Forth, X. Liu, J. Hasnain, A. Toor, K. Miszta, S. Shi, P. L. Geissler, T. Emrick, B. A. Helms, T. P. Russell, Adv. Mater. 2018, 30, 1707603.
- 11J. Yan, M. A. Baird, D. C. Popple, A. Zettl, T. P. Russell, B. A. Helms, J. Am. Chem. Soc. 2022, 144, 3979–3988.
- 12W. Feng, Y. Chai, J. Forth, P. D. Ashby, T. P. Russell, B. A. Helms, Nat. Commun. 2019, 10, 1095.
- 13
- 13aS. Sun, Y. Luo, Y. Yang, J. Chen, S. Li, Z. Wu, S. Shi, Small 2022, 18, 2204182;
- 13bH. Sun, L. Li, T. P. Russell, S. Shi, J. Am. Chem. Soc. 2020, 142, 8591–8595;
- 13cK. Piradashvili, E. M. Alexandrino, F. R. Wurm, K. Landfester, Chem. Rev. 2016, 116, 2141–2169.
- 14
- 14aP.-Y. Gu, G. Xie, P. Y. Kim, Y. Chai, X. Wu, Y. Jiang, Q.-F. Xu, F. Liu, J.-M. Lu, T. P. Russell, Angew. Chem. Int. Ed. 2021, 60, 2871–2876;
- 14bP.-Y. Gu, Y. Chai, H. Hou, G. Xie, Y. Jiang, Q.-F. Xu, F. Liu, P. D. Ashby, J.-M. Lu, T. P. Russell, Angew. Chem. Int. Ed. 2019, 58, 12112–12116.
- 15M. Moradi, N. L. Opara, L. G. Tulli, C. Wäckerlin, S. J. Dalgarno, S. J. Teat, M. Baljozovic, O. Popova, E. van Genderen, A. Kleibert, H. Stahlberg, J. P. Abrahams, C. Padeste, P. F.-X. Corvini, T. A. Jung, P. Shahgaldian, Sci. Adv. 2019, 5, eaav4489.
- 16S. K. M. Nalluri, C. Berdugo, N. Javid, P. W. J. M. Frederix, R. V. Ulijn, Angew. Chem. Int. Ed. 2014, 53, 5882–5887.
- 17J. Ji, W. Wu, W. Liang, G. Cheng, R. Matsushita, Z. Yan, X. Wei, M. Rao, D.-Q. Yuan, G. Fukuhara, T. Mori, Y. Inoue, C. Yang, J. Am. Chem. Soc. 2019, 141, 9225–9238.
- 18G. Weng, S. Thanneeru, J. He, Adv. Mater. 2018, 30, 1706526.
- 19X. Ji, B. Shi, H. Wang, D. Xia, K. Jie, Z. L. Wu, F. Huang, Adv. Mater. 2015, 27, 8062–8066.
- 20R. V. Kazantsev, A. J. Dannenhoffer, A. S. Weingarten, B. T. Phelan, B. Harutyunyan, T. Aytun, A. Narayanan, D. J. Fairfield, J. Boekhoven, H. Sai, A. Senesi, P. I. O'Dogherty, L. C. Palmer, M. J. Bedzyk, M. R. Wasielewski, S. I. Stupp, J. Am. Chem. Soc. 2017, 139, 6120–6127.
- 21
- 21aY.-S. Wong, M. Ng, M. C.-L. Yeung, V. W.-W. Yam, J. Am. Chem. Soc. 2021, 143, 973–982;
- 21bS. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, S. J. Rowan, J. Am. Chem. Soc. 2010, 132, 12051–12058;
- 21cJ.-H. Deng, J. Luo, Y.-L. Mao, S. Lai, Y.-N. Gong, D.-C. Zhong, T.-B. Lu, Sci. Adv. 2020, 6, 9976.
- 22P. Pieranski, Phys. Rev. Lett. 1980, 45, 569–572.
- 23
- 23aX. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042–6065;
- 23bA. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476–5490;
- 23cS. Panja, D. J. Adams, Chem. Soc. Rev. 2021, 50, 5165–5200;
- 23dP. Sun, B. Qin, J.-F. Xu, X. Zhang, Prog. Polym. Sci. 2022, 124, 101486;
- 23eZ. Mao, J. Guo, S. Bai, T.-L. Nguyen, H. Xia, Y. Huang, P. Mulvaney, D. Wang, Angew. Chem. Int. Ed. 2009, 48, 4953–4956;
- 23fJ. J. I. V. Armao, I. Nyrkova, G. Fuks, A. Osypenko, M. Maaloum, E. Moulin, R. Arenal, O. Gavat, A. Semenov, N. Giuseppone, J. Am. Chem. Soc. 2017, 139, 2345–2350.
- 24
- 24aB. Qin, S. Zhang, Q. Song, Z. Huang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7639–7643;
- 24bB. Qin, S. Zhang, Z. Huang, J.-F. Xu, X. Zhang, Macromolecules 2018, 51, 1620–1625;
- 24cS. Zhang, B. Qin, Z. Huang, J.-F. Xu, X. Zhang, ACS Macro Lett. 2019, 8, 177–182.
- 25H. Hou, J. Li, X. Li, J. Forth, J. Yin, X. Jiang, B. A. Helms, T. P. Russell, Angew. Chem. Int. Ed. 2019, 58, 10142–10147.
- 26S. J. D. Lugger, S. J. A. Houben, Y. Foelen, M. G. Debije, A. P. H. J. Schenning, D. J. Mulder, Chem. Rev. 2022, 122, 4946–4975.
- 27R. Varshney, C. Agashe, A. K. Gill, M. Alam, R. Joseph, D. Patra, Chem. Commun. 2021, 57, 10604–10607.
- 28Y. Hata, S. Yoneda, S. Tanaka, T. Sawada, T. Serizawa, J. Colloid Interface Sci. 2021, 590, 487–494.
- 29
- 29aJ. Li, Z. Xu, Y. Xiao, G. Gao, J. Chen, J. Yin, J. Fu, J. Mater. Chem. B 2018, 6, 257–264;
- 29bG. Ju, F. Guo, Q. Zhang, A. J. C. Kuehne, S. Cui, M. Cheng, F. Shi, Adv. Mater. 2017, 29, 1702444;
- 29cC. F. V. Sousa, E. Fernandez-Megia, J. Borges, J. F. Mano, Polym. Chem. 2021, 12, 5902–5930;
- 29dQ. Zhang, B. Zhao, Z. Lin, F. Shi, M. Cheng, ACS Appl. Mater. Interfaces 2023, 15, 2459–2467.
- 30
- 30aK. Venkata Rao, D. Miyajima, A. Nihonyanagi, T. Aida, Nat. Chem. 2017, 9, 1133–1139;
- 30bS. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, M. Takeuchi, Nat. Chem. 2014, 6, 188–195;
- 30cZ. Shen, Y. Jiang, T. Wang, M. Liu, J. Am. Chem. Soc. 2015, 137, 16109–16115.
- 31
- 31aS. Jiang, L. Zhang, M. Liu, Chem. Commun. 2009, 6252–6254;
- 31bR. Rotomskis, R. Augulis, V. Snitka, R. Valiokas, B. Liedberg, J. Phys. Chem. B 2004, 108, 2833–2838;
- 31cN. C. Maiti, M. Ravikanth, S. Mazumdar, N. Periasamy, J. Phys. Chem. 1995, 99, 17192–17197;
- 31dA. L. Yeats, A. D. Schwab, B. Massare, D. E. Johnston, A. T. Johnson, J. C. de Paula, W. F. Smith, J. Phys. Chem. C 2008, 112, 2170–2176;
- 31eY. Egawa, R. Hayashida, J.-i. Anzai, Langmuir 2007, 23, 13146–13150;
- 31fA. D. Schwab, D. E. Smith, C. S. Rich, E. R. Young, W. F. Smith, J. C. de Paula, J. Phys. Chem. B 2003, 107, 11339–11345.
- 32P.-Y. Gu, P. Y. Kim, Y. Chai, P. D. Ashby, Q.-F. Xu, F. Liu, Q. Chen, J.-M. Lu, T. P. Russell, Small 2022, 18, 2270028.
- 33
- 33aP.-Y. Gu, F. Zhou, G. Xie, P. Y. Kim, Y. Chai, Q. Hu, S. Shi, Q.-F. Xu, F. Liu, J.-M. Lu, T. P. Russell, Angew. Chem. Int. Ed. 2021, 60, 8694–8699;
- 33bB. Wang, B. Yin, H. Yu, Z. Zhang, G. Wang, S. Shi, X. Gu, W. Yang, B. Z. Tang, T. P. Russell, ACS Appl. Mater. Interfaces 2022, 14, 54287–54292.
- 34
- 34aT. Ogoshi, T. Kakuta, T.-a. Yamagishi, Angew. Chem. Int. Ed. 2019, 58, 2197–2206;
- 34bX. Xu, V. V. Jerca, R. Hoogenboom, Angew. Chem. Int. Ed. 2020, 59, 6314–6316;
- 34cY. Luo, Y. Yang, Y. Wang, Z. Wu, T. P. Russell, S. Shi, Angew. Chem. Int. Ed. 2022, 61, e202207199.
- 35
- 35aS. K. Ghosh, A. Dhamija, Y. H. Ko, J. An, M. Y. Hur, D. R. Boraste, J. Seo, E. Lee, K. M. Park, K. Kim, J. Am. Chem. Soc. 2019, 141, 17503–17506;
- 35bB. Wang, H. Chen, T. Liu, S. Shi, T. P. Russell, Engineering 2021, 7, 603–614.
- 36Z. Liu, Y. Liu, Chem. Soc. Rev. 2022, 51, 4786–4827.
- 37Y. Zheng, Z. Yu, R. M. Parker, Y. Wu, C. Abell, O. A. Scherman, Nat. Commun. 2014, 5, 5772.
- 38M. Pfeffermann, R. Dong, R. Graf, W. Zajaczkowski, T. Gorelik, W. Pisula, A. Narita, K. Müllen, X. Feng, J. Am. Chem. Soc. 2015, 137, 14525–14532.
- 39
- 39aR. Wang, Z.-W. Lin, M. J. Klemes, M. Ateia, B. Trang, J. Wang, C. Ching, D. E. Helbling, W. R. Dichtel, ACS Cent. Sci. 2022, 8, 663–669;
- 39bL. Xiao, Y. Ling, A. Alsbaiee, C. Li, D. E. Helbling, W. R. Dichtel, J. Am. Chem. Soc. 2017, 139, 7689–7692;
- 39cZ. Xia, C.-G. Lin, Y. Yang, Y. Wang, Z. Wu, Y.-F. Song, T. P. Russell, S. Shi, Angew. Chem. Int. Ed. 2022, 61, e202203741.
- 40L. Li, H. Sun, M. Li, Y. Yang, T. P. Russell, S. Shi, Angew. Chem. Int. Ed. 2021, 60, 17394–17397.
- 41H. Sun, M. Li, L. Li, T. Liu, Y. Luo, T. P. Russell, S. Shi, J. Am. Chem. Soc. 2021, 143, 3719–3722.
- 42
- 42aA. Friggeri, O. Gronwald, K. J. C. van Bommel, S. Shinkai, D. N. Reinhoudt, J. Am. Chem. Soc. 2002, 124, 10754–10758;
- 42bK. Liu, C. Wang, Z. Li, X. Zhang, Angew. Chem. Int. Ed. 2011, 50, 4952–4956;
- 42cJ.-R. Wu, G. Wu, D. Li, Y.-W. Yang, Angew. Chem. Int. Ed. 2023, 62, e2022181;
- 42dA. Mukherjee, S. Barman, A. Ghosh, A. Datta, A. Datta, S. Ghosh, Angew. Chem. Int. Ed. 2022, 61, e202203817.
- 43S. Sun, C. Xie, J. Chen, Y. Yang, H. Li, T. P. Russell, S. Shi, Angew. Chem. Int. Ed. 2021, 60, 26363–26367.
- 44
- 44aY. Chai, A. Lukito, Y. Jiang, P. D. Ashby, T. P. Russell, Nano Lett. 2017, 17, 6453–6457;
- 44bL. Costa, G. Li-Destri, N. H. Thomson, O. Konovalov, D. Pontoni, Nano Lett. 2016, 16, 5463–5468.
- 45Y. Chai, J. Hasnain, K. Bahl, M. Wong, D. Li, P. Geissler, P. Y. Kim, Y. Jiang, P. Gu, S. Li, D. Lei, B. A. Helms, T. P. Russell, P. D. Ashby, Sci. Adv. 2020, 6, 8675.