Engineering Support and Distribution of Palladium and Tin on MXene with Modulation of the d-Band Center for CO-resilient Methanol Oxidation
Shufen Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorNing Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorJunjie Zhong
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Rongliang Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Bo Yan
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Liyong Gan
Institute for Structure and Function, Department of Physics, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorProf. Peng Yu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Xuchun Gui
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Hongbin Yang
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Zhiping Zeng
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Guowei Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorShufen Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorNing Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorJunjie Zhong
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Rongliang Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Bo Yan
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Liyong Gan
Institute for Structure and Function, Department of Physics, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorProf. Peng Yu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Xuchun Gui
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Hongbin Yang
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Zhiping Zeng
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Guowei Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorGraphical Abstract
Boosted electron interaction of metal nano-alloy with Se-doped MXene and optimized distribution of Pd−Sn sites on PdSn0.5/Se−Ti3C2 can modulate the d band center, decrease adsorption energies of CO* at Pd site and enhance OH* generation at Sn site, thus removing CO poisonous intermediates, and thereby significantly enhancing methanol oxidation reaction (MOR) efficiency and durability of the anodic catalyst for a direct methanol fuel cell (DMFC).
Abstract
The efficiency of direct methanol fuel cell (DMFC) is largely determined by the activity and durability of methanol oxidation reaction (MOR) catalysts. Herein, we present a CO-resilient MOR catalyst of palladium-tin nano-alloy anchored on Se-doped MXene (PdSn0.5/Se−Ti3C2) via a progressive one-step electrochemical deposition strategy. MOR mass activity resulting from Pd/Se−Ti3C2 catalyst (1046.2 mA mg−1) is over 2-fold larger than that of Pd/Ti3C2, suggesting that the introduction of Se atoms on MXene might accelerate the reaction kinetics. PdSn0.5/Se−Ti3C2 with Se-doping progress of MXene and the cooperated Pd−Sn sites has a superior MOR mass activity (4762.8 mA mg−1), outperforming many other reported Pd-based catalysts. Both experimental results and theoretical calculation reveal that boosted electron interaction of metal crystals with Se-doped MXene and optimized distribution of Pd−Sn sites can modulate the d band center, reduce adsorption energies of CO* at Pd site and enhance OH* generation at Sn site, resulting in highly efficient removal of CO intermediates by reaction with neighboring OH species on adjacent Sn sites.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202209693-sup-0001-misc_information.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan, H. Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. K. Miller, P. B. O'Mara, T. M. Benedetti, D. L. Huber, W. H. Zhang, S. C. Smith, J. J. Gooding, W. Schuhmann, R. D. Tilley, Nat. Catal. 2022, 5, 231–237;
- 1bJ. F. Chang, G. Z. Wang, M. Y. Wang, Q. Wang, B. Y. Li, H. Zhou, Y. M. Zhu, W. Zhang, M. Omer, N. Orlovskaya, Q. Ma, M. Gu, Z. X. Feng, G. F. Wang, Y. Yang, Nat. Energy 2021, 6, 1144–1153;
- 1cJ. Yang, R. Hubner, J. W. Zhang, H. Wan, Y. Y. Zheng, H. L. Wang, H. Y. Qi, L. Q. He, Y. Li, A. A. Dubale, Y. J. Sun, Y. T. Liu, D. L. Peng, Y. Z. Meng, Z. K. Zheng, J. Rossmeisl, W. Liu, Angew. Chem. Int. Ed. 2021, 60, 9590–9597; Angew. Chem. 2021, 133, 9676–9683.
- 2
- 2aW. Q. Yao, X. Jiang, M. Li, Y. L. Li, Y. Y. Liu, X. Zhan, G. T. Fu, Y. W. Tang, Appl. Catal. B 2021, 282, 119595;
- 2bW. Li, D. D. Wang, Y. Q. Zhang, L. Tao, T. H. Wang, Y. Q. Zou, Y. Y. Wang, R. Chen, S. Y. Wang, Adv. Mater. 2020, 32, 1907879;
- 2cL. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc. 2018, 140, 1142–1147;
- 2dS. B. Li, Z. Q. Tian, Y. Liu, Z. Jang, S. W. Hasan, X. F. Chen, P. Tsiakaras, P. K. Shen, Chin. J. Catal. 2021, 42, 648–657;
- 2eL. Y. Gong, Z. Y. Yang, K. Li, W. Xing, C. P. Liu, J. J. Ge, J. Energy Chem. 2018, 27, 1618–1628.
- 3W. Y. Zhang, Y. Yang, B. L. Huang, F. Lv, K. Wang, N. Li, M. C. Luo, Y. G. Chao, Y. J. Li, Y. J. Sun, Z. K. Xu, Y. N. Qin, W. X. Yang, J. H. Zhou, Y. P. Du, D. Su, S. J. Guo, Adv. Mater. 2019, 31, 1805833.
- 4H. J. Huang, Y. J. Wei, Y. Yang, M. M. Yan, H. Y. He, Q. G. Jiang, X. F. Yang, J. X. Zhu, J. Energy Chem. 2021, 57, 601–609.
- 5
- 5aW. X. Guo, Z. Y. Wang, X. Q. Wang, Y. Wu, Adv. Mater. 2021, 33, 2004287;
- 5bA. Q. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81;
- 5cJ. F. Ruan, Y. P. Chen, G. Q. Zhao, P. Li, B. X. Zhang, Y. Z. Jiang, T. Y. Ma, H. G. Pan, S. X. Dou, W. P. Sun, Small 2022, 2107067;
- 5dZ. Y. Qi, C. X. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. C. Pei, X. L. Li, L. A. Curtiss, W. Y. Huang, J. Am. Chem. Soc. 2017, 139, 4762–4768;
- 5eD. Zhao, Z. W. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. D. Li, Chem. Soc. Rev. 2020, 49, 2215–2264.
- 6
- 6aY. A. Li, Y. Chen, J. L. Qin, J. H. Chen, Y. H. Zhao, Y. S. Xie, H. Y. He, H. J. Huang, ChemNanoMat 2022, 8, e202200176;
- 6bL. Chong, J. G. Wen, J. Kubal, F. G. Sen, J. X. Zou, J. Greeley, M. Chan, H. Barkholtz, W. J. Ding, D. J. Liu, Science 2018, 362, 1276–1281;
- 6cS. Ponnada, M. S. Kiai, D. B. Gorle, A. Nowduri, R. K. Sharma, Energy Fuel 2021, 35, 15265–15284.
- 7
- 7aG. F. Hu, L. Shang, T. Sheng, Y. G. Chen, L. Y. Wang, Adv. Funct. Mater. 2020, 30, 2002281;
- 7bH. Begum, M. M. Rahman, M. A. Hasnat, Int. J. Energy Res. 2022, 46, 13769–1378;
- 7cQ. Q. Wu, X. Huang, T. T. Wan, D. Xiang, X. W. Li, K. Wang, X. Y. Yuan, P. Li, M. Z. Zhu, Inorg. Chem. 2022, 61, 2612–2618;
- 7dS. Y. Ma, H. H. Li, B. C. Hu, X. Cheng, Q. Q. Fu, S. H. Yug, J. Am. Chem. Soc. 2017, 139, 5890–5895.
- 8
- 8aS. Mitchell, R. X. Qin, N. F. Zheng, J. Perez-Ramirez, Nat. Nanotechnol. 2021, 16, 129–139;
- 8bM. E. Scofield, C. Koenigsmann, L. Wang, H. Q. Liu, S. S. Wong, Energy Environ. Sci. 2015, 8, 350–363.
- 9Q. C. Feng, S. Zhao, D. S. He, S. B. Tian, L. Gu, X. D. Wen, C. Chen, Q. Peng, D. S. Wang, Y. D. Li, J. Am. Chem. Soc. 2018, 140, 2773–2776.
- 10
- 10aL. Chen, L. L. Lu, H. L. Zhu, Y. G. Chen, Y. Huang, Y. D. Li, L. Y. Wang, Nat. Commun. 2020, 11, 1333;
- 10bS. Y. Xu, W. J. Hou, R. Jiang, L. Li, T. Sheng, L. Wang, Chem. Commun. 2019, 55, 13602–13605.
- 11
- 11aA. V. Mohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, abf1581;
- 11bV. Kamysbayev, A. S. Filatov, H. C. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, D. V. Talapin, Science 2020, 369, 979–983;
- 11cJ. Z. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. K. Han, W. R. Yang, J. Q. Liu, X. G. Wang, Y. Gogotsi, J. M. Razal, Adv. Mater. 2020, 32, 2001093;
- 11dR. Yang, X. Gui, L. Yao, Q. Hu, L. Yang, H. Zhang, Y. Yao, H. Mei, Z. Tang, Nano-Micro Lett. 2021, 13, 66;
- 11eZ. P. Zeng, Y. B. Yan, J. Chen, P. Zan, Q. H. Tian, P. Chen, Adv. Funct. Mater. 2019, 29, 1806500;
- 11fW. Chen, X. Gui, L. Yang, H. Zhu, Z. Tang, Nanoscale Horiz. 2019, 4, 291–320.
- 12
- 12aM. Naguib, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2021, 33, 2103393;
- 12bS. G. Peera, C. Liu, J. Shim, A. K. Sahu, T. G. Lee, M. Selvaraj, R. Koutavarapu, Ceram. Int. 2021, 47, 28106–28121.
- 13Z. Lang, Z. Zhuang, S. Li, L. Xia, Y. Zhao, Y. Zhao, C. Han, L. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.
- 14C. Yang, Q. Jiang, H. Huang, H. He, L. Yang, W. Li, ACS Appl. Mater. Interfaces 2020, 12, 23822–23830.
- 15C. Yang, Q. Jiang, H. Liu, L. Yang, H. He, H. Huang, W. Li, J. Mater. Chem. A 2021, 9, 15432–15440.
- 16D. Y. Zhao, P. Wang, H. X. Di, P. Zhang, X. B. Hui, L. W. Yin, Adv. Funct. Mater. 2021, 31, 2010544.
- 17Y. Tian, Y. L. An, Y. J. Yang, B. A. Xu, Energy Storage Mater. 2022, 49, 122–134.
- 18X. M. Wang, W. Z. Fan, C. M. Zhang, M. Z. Chi, A. M. Zhu, Q. G. Zhang, Q. L. Liu, Electrochim. Acta 2019, 320, 134588.
- 19H. Xu, D. X. Liu, W. J. Wang, G. X. Yu, Inorg. Chem. 2022, 61, 3121–3131.
- 20
- 20aR. Karkuzhali, S. Manoj, K. Shanmugapriya, A. V. N. Kumar, G. Gopu, N. Muniyappan, B. H. Jeon, S. M. Prabhu, J. Solid State Chem. 2022, 306, 122727;
- 20bR. H. Wang, M. H. Li, K. W. Sun, Y. H. Zhang, J. F. Li, W. Z. Bao, Small 2022, 18, 2201740.
- 21T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, M. Jin, Nature 2021, 598, 76–81.
- 22B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71–129.
- 23P. Ferrin, M. Mavrikakis, J. Am. Chem. Soc. 2009, 131, 14381–14389.