Regulating Crystal Packing by Terminal tert-Butylation for Enhanced Solid-State Emission and Efficacious Charge Transport in an Anthracene-Based Molecular Crystal
Dr. Jie Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (equal)
Search for more papers by this authorDr. Zhengsheng Qin
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Contribution: Data curation (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDr. Yajing Sun
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Formal analysis (equal), Software (lead)
Search for more papers by this authorProf. Yonggang Zhen
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorProf. Jie Liu
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Methodology (supporting), Resources (supporting)
Search for more papers by this authorProf. Ye Zou
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorDr. Chunlei Li
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Data curation (supporting), Validation (supporting)
Search for more papers by this authorXueying Lu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Contribution: Methodology (supporting), Software (supporting)
Search for more papers by this authorProf. Lang Jiang
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorProf. Xiaotao Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Contribution: Validation (supporting)
Search for more papers by this authorProf. Deyang Ji
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Contribution: Validation (supporting)
Search for more papers by this authorProf. Liqiang Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Huanli Dong
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Prof. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Jie Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (equal)
Search for more papers by this authorDr. Zhengsheng Qin
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Contribution: Data curation (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDr. Yajing Sun
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Formal analysis (equal), Software (lead)
Search for more papers by this authorProf. Yonggang Zhen
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorProf. Jie Liu
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Methodology (supporting), Resources (supporting)
Search for more papers by this authorProf. Ye Zou
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorDr. Chunlei Li
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Data curation (supporting), Validation (supporting)
Search for more papers by this authorXueying Lu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Contribution: Methodology (supporting), Software (supporting)
Search for more papers by this authorProf. Lang Jiang
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorProf. Xiaotao Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Contribution: Validation (supporting)
Search for more papers by this authorProf. Deyang Ji
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Contribution: Validation (supporting)
Search for more papers by this authorProf. Liqiang Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Huanli Dong
Beijing National Laboratory for Molecular Sciences, Key laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Prof. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorMinor changes have been made to this paper since its publication in Early View.
Graphical Abstract
An anthracene-based molecular crystal with a unique “slipped herringbone” packing motif has been developed by delicate crystal engineering through terminal tert-butylation. Appropriate exciton-exciton coupling/electron-phonon coupling originating from the unique crystal packing induces a remarkably strong solid-state emission (photoluminescence quantum efficiency, ΦF=74.9 %) and efficacious charge transport (carrier mobility, μ=5.0 cm2 V−1 s−1).
Abstract
Organic semiconductors with combinative high carrier mobility and efficient solid-state emission are full of challenges but urgently pursued for developing new emerging optoelectronics. Herein, by delicately regulating the crystal packing of an anthracene-based molecular crystal via terminal tert-butylation, we developed a superior high mobility emissive molecule, 2,6-di(6-tert-butylnaphthyl)anthracene (TBU-DNA). The unique “slipped herringbone” packing motif of TBU-DNA enables its appropriate exciton-exciton coupling and electron-phonon coupling, thus resulting in remarkably high solid-state emission (photoluminescence quantum yield, ΦF≈74.9 %) and efficacious charge transport (carrier mobility, μ=5.0 cm2 V−1 s−1). Furthermore, OLETs based on TBU-DNA show an external quantum efficiency (EQE) of 1.8 %, which is among the highest EQE values for single component OLETs reported till now. This work presents a crystal engineering strategy via exquisite molecular design to realize high mobility emissive organic semiconductors.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202206825-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
anie202206825-sup-0001-Movie_-N_type-20220508lijie.avi922.2 KB | Supporting Information |
anie202206825-sup-0001-Movie_-P_type-20220508lijie.avi745.7 KB | Supporting Information |
anie202206825-sup-0001-TBU-DNA.cif739.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Baeg, M. Binda, D. Natali, M. Caironi, Y. Noh, Adv. Mater. 2013, 25, 4267–4295;
- 1bY. Guo, G. Yu, Y. Liu, Adv. Mater. 2010, 22, 4427–4447;
- 1cC. Wang, X. Zhang, W. Hu, Chem. Soc. Rev. 2020, 49, 653–670;
- 1dD. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhang, Z. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, H. Fuchs, Nat. Commun. 2019, 10, 12.
- 2
- 2aA. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 2003, 91, 157406;
- 2bF. Cicoira, C. Santato, Adv. Funct. Mater. 2007, 17, 3421–3434;
- 2cJ. Zaumseil, Adv. Funct. Mater. 2020, 30, 1905269;
- 2dZ. Qin, H. Gao, J. Liu, K. Zhou, J. Li, Y. Dang, L. Huang, H. Deng, X. Zhang, H. Dong, W. Hu, Adv. Mater. 2019, 31, 1903175;
- 2eZ. Qin, H. Gao, H. Dong, W. Hu, Adv. Mater. 2021, 33, 2007149;
- 2fY. Liu, Y. Guo, Y. Liu, Small Struct. 2021, 2, 2000083;
- 2gZ. Qin, C. Gao, H. Gao, T. Wang, H. Dong, W. Hu, Sci. Adv. 2022, 8, eabp8775;
- 2hM. Muccini, S. Toffanin, Organic Light-Emitting Transistors: Towards the Next Generation Display Technology, Wiley-Science Wise Co-Publication, Hoboken, 2016.
10.1002/9781119189978 Google Scholar
- 3G. Zhao, H. Dong, Q. Liao, J. Jiang, Y. Luo, H. Fu, W. Hu, Nat. Commun. 2018, 9, 4790.
- 4
- 4aB. B. Hsu, C. Duan, E. B. Namdas, A. Gutacker, J. D. Yuen, F. Huang, Y. Cao, G. C. Bazan, I. D. Samuel, A. J. Heeger, Adv. Mater. 2012, 24, 1171–1175;
- 4bR. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nat. Mater. 2010, 9, 496–503;
- 4cM. Schidleja, C. Melzer, H. von Seggern, Adv. Mater. 2009, 21, 1172.
- 5
- 5aC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915;
- 5bH. Liu, J. Zeng, J. Guo, H. Nie, Z. Zhao, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 9290–9294; Angew. Chem. 2018, 130, 9434–9438;
- 5cX. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, F. Li, Nature 2018, 563, 536–540;
- 5dY. Yao, Y. Chen, H. Wang, P. Samorì, Smart Mater. Struct. 2020, 1, 1009;
- 5eC. Wang, X. Ren, C. Xu, B. Fu, R. Wang, X. Zhang, R. Li, H. Li, H. Dong, Y. Zhen, S. Lei, L. Jiang, W. Hu, Adv. Mater. 2018, 30, 1706260.
- 6
- 6aV. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926–952;
- 6bH. Dong, X. Fu, J. Liu, Z. Wang, W. Hu, Adv. Mater. 2013, 25, 6158–6182.
- 7
- 7aBirks, J. B. Photophysics of aromatic molecules; Wiley-Interscience: London, UK, 1970;
- 7bM. Liu, Y. Wei, Q. Ou, P. Yu, G. Wang, Y. Duan, H. Geng, Q. Peng, Z. Shuai, Y. Liao, J. Phys. Chem. Lett. 2021, 12, 938–946;
- 7cQ. Sun, J. Ren, T. Jiang, Q. Peng, Q. Ou, Z. Shuai, Nano Lett. 2021, 21, 5394–5400.
- 8
- 8aS. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta, Y. Iwasa, Adv. Funct. Mater. 2009, 19, 1728–1735;
- 8bA. Dadvand, A. G. Moiseev, K. Sawabe, W.-H. Sun, B. Djukic, I. Chung, T. Takenobu, F. Rosei, D. F. Perepichka, Angew. Chem. Int. Ed. 2012, 51, 3837–3841; Angew. Chem. 2012, 124, 3903–3907;
- 8cJ. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu, Nat. Commun. 2015, 6, 10032;
- 8dJ. Deng, Y. Xu, L. Liu, C. Feng, J. Tang, Y. Gao, Y. Wang, B. Yang, P. Lu, W. Yang, Y. Ma, Chem. Commun. 2016, 52, 2370–2373;
- 8eJ. Li, K. Zhou, J. Liu, Y. Zhen, L. Liu, J. Zhang, H. Dong, X. Zhang, L. Jiang, W. Hu, J. Am. Chem. Soc. 2017, 139, 17261–17264;
- 8fS. Ma, K. Zhou, M. Hu, Q. Li, Y. Liu, H. Zhang, J. Jing, H. Dong, B. Xu, W. Hu, W. Tian, Adv. Funct. Mater. 2018, 28, 1802454;
- 8gY. Wan, J. Deng, W. Wu, J. Zhou, Q. Niu, H. Li, H. Yu, C. Gu, Y. Ma, ACS Appl. Mater. Interfaces 2020, 12, 43976–43983;
- 8hD. Yuan, M. A. Awais, V. Sharapov, X. Liu, A. Neshchadin, W. Chen, L. Yu, J. Am. Chem. Soc. 2021, 143, 5239–5346;
- 8iL. Liu, C. Cai, Z. Zhang, S. Zhang, J. Deng, B. Yang, C. Gu, Y. Ma, ACS Mater. Lett. 2021, 3, 428–432;
- 8jZ. Xie, D. Liu, Y. Zhang, Q. Liu, H. Dong, W. Hu, Chem. J. Chin. Univ. 2020, 41, 1179–1193;
- 8kM. Chen, Y. Zhao, L. Yan, S. Yang, Y. Zhu, I. Murtaza, G. He, H. Meng, W. Huang, Angew. Chem. Int. Ed. 2017, 56, 722–727; Angew. Chem. 2017, 129, 740–745.
- 9
- 9aG. R. Desiraju, Angew. Chem. Int. Ed. 2007, 46, 8342–8356; Angew. Chem. 2007, 119, 8492–8508;
- 9bP. Yu, Y. Zhen, H. Dong, W. Hu, Chem 2019, 5, 2814–2853.
- 10G. R. Desiraju, Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.
- 11
- 11aJ. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482–9483;
- 11bP. He, Z. Tu, G. Zhao, Y. Zhen, H. Geng, Y. Yi, Z. Wang, H. Zhang, C. Xu, J. Liu, X. Lu, X. Fu, Q. Zhao, X. Zhang, D. Ji, L. Jiang, H. Dong, W. Hu, Adv. Mater. 2015, 27, 825–830;
- 11cK. Takimiya, K. Bulgarevich, M. Abbas, S. Horiuchi, T. Ogaki, K. Kawabata, A. Ablat, Adv. Mater. 2021, 33, 2102914;
- 11dG. E. Purdum, N. G. Telesz, K. Jarolimek, S. M. Ryno, T. Gessner, N. C. Davy, A. J. Petty, Y. Zhen, Y. Shu, A. Facchetti, G. E. Collis, W. Hu, C. Wu, J. E. Anthony, R. T. Weitz, C. Risko, Y.-L. Loo, J. Am. Chem. Soc. 2018, 140, 7519–7525.
- 12
- 12aT. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736–740;
- 12bG. Giri, E. Verploegen, S. C. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504–508;
- 12cY. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005;
- 12dY. Diao, B. C. Tee, G. Giri, J. Xu, H. Kim do, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665–671;
- 12eS. Chen, X. Ma, Z. Cai, H. Long, X. Wang, Z. Li, Z. Qu, F. Zhang, Y. Qiao, Y. Song, Adv. Mater. 2022, 34, 2200928;
- 12fJ. Yao, Y. Zhang, X. Tian, X. Zhang, H. Zhao, X. Zhang, J. Jie, X. Wang, R. Li, W. Hu, Angew. Chem. Int. Ed. 2019, 58, 16082–16086; Angew. Chem. 2019, 131, 16228–16232.
- 13
- 13aH. Jiang, W. Hu, Angew. Chem. Int. Ed. 2020, 59, 1408–1428; Angew. Chem. 2020, 132, 1424–1445;
- 13bX. Zhang, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1801048.
- 14Deposition Numbers 2160624, 1901585 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 15F. C. Spano, Acc. Chem. Res. 2010, 43, 429–439.
- 16Y. Yomogida, H. Sakai, K. Sawabe, S. Gocho, S. Z. Bisri, H. Nakanotani, C. Adachi, T. Hasobe, Y. Iwasa, T. Takenobu, Org. Electron. 2013, 14, 2737–2742.
- 17S. R. Forrest, Organic electronics: foundations to applications, Oxford University Press, Oxford, 2020.
10.1093/oso/9780198529729.001.0001 Google Scholar
- 18
- 18aW. Li, Q. Peng, Y. Xie, T. Zhang, Z. Shuai, Acta Chim. Sin. 2016, 74, 902–909;
- 18bY. Sun, H. Geng, Q. Peng, Z. G. Shuai, ChemPhysChem 2020, 21, 952–957.
- 19
- 19aC. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev. 2018, 47, 422–500;
- 19bJ. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724–674.
- 20
- 20aC. Cheng, H. Geng, Y. Yi, Z. Shuai, J. Mater. Chem. C 2017, 5, 3247–3253;
- 20bC. E. Swenberg, M. Pope, Chem. Phys. Lett. 1998, 287, 535–536.
- 21
- 21aR. Li, W. P. Hu, Y. Liu, D. Zhu, Acc. Chem. Res. 2010, 43, 529–540;
- 21bQ. Tang, L. Jiang, Y. Tong, H. Li, Y. Liu, Z. Wang, W. Hu, Y. Liu, D. Zhu, Adv. Mater. 2008, 20, 2947–2951.
- 22Q. Tang, Y. Tong, H. Li, Z. Ji, L. Li, W. Hu, Y. Liu, D. Zhu, Adv. Mater. 2008, 20, 1511–1515.
- 23F. C. Chen, C. H. Liao, Appl. Phys. Lett. 2008, 93, 103310.
- 24F. Tassone Yamamoto, Phys. Rev. B 1999, 59, 10830–10842.