Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx
Yan-Xin Duan
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
These authors contributed equally to this work.
Search for more papers by this authorYi-Tong Zhou
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
These authors contributed equally to this work.
Search for more papers by this authorZhen Yu
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorDong-Xue Liu
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorProf. Zi Wen
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Prof. Jun-Min Yan
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorProf. Qing Jiang
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorYan-Xin Duan
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
These authors contributed equally to this work.
Search for more papers by this authorYi-Tong Zhou
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
These authors contributed equally to this work.
Search for more papers by this authorZhen Yu
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorDong-Xue Liu
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorProf. Zi Wen
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Prof. Jun-Min Yan
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorProf. Qing Jiang
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorGraphical Abstract
The limited current density, production rate as well as selectivity hinder the improvement of HCOOH production from CO2 electroreduction. Here, bismuth/cerium oxide (Bi/CeOx) displays outstanding performances for CO2 electroreduction to HCOOH, which not only shows excellent selectivity, but also achieves a high current density (149 mA cm−2) and especially the maximum HCOOH production rate (2600 μmol h−1 cm−2) ever reported.
Abstract
Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/cerium oxide (Bi/CeOx) catalyst, which exhibits not only high current density (149 mA cm−2), but also unprecedented production rate (2600 μmol h−1 cm−2) with high Faradaic efficiency (FE, 92 %) for HCOOH generation in aqueous media. Furthermore, Bi/CeOx also shows favorable stability over 34 h. We hope this work could offer an attractive and promising strategy to develop efficient catalysts for CO2 electroreduction with superior activity and desirable stability.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202015713-sup-0001-misc_information.pdf4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 2017, 3, 560–587.
- 2J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675.
- 3L. Zhang, Z. J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2017, 56, 11326–11353; Angew. Chem. 2017, 129, 11482–11511.
- 4E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, J. Pérez-Ramírez, Energy Environ. Sci. 2013, 6, 3112–3135.
- 5Q. Wang, Y. Lei, D. Wang, Y. Li, Energy Environ. Sci. 2019, 12, 1730–1750.
- 6J. Zhang, M. Chen, H. Li, Y. Li, J. Ye, Z. Cao, M. Fang, Q. Kuang, J. Zheng, Z. Xie, Nano Energy 2018, 44, 127–134.
- 7L. Y. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li, L. Zheng, W. Chen, Appl. Surf. Sci. 2019, 469, 305–311.
- 8G. A. El-Nagar, A. M. Mohammad, M. S. El-Deab, B. E. El-Anadouli, ACS Appl. Mater. Interfaces 2017, 9, 19766–19772.
- 9K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118, 372–433.
- 10S. Verma, B. Kim, H. R. M. Jhong, S. Ma, P. J. A. Kenis, ChemSusChem 2016, 9, 1972–1979.
- 11M. Fan, S. Garbarino, G. A. Botton, A. C. Tavaresa, D. Guay, J. Mater. Chem. A 2017, 5, 20747–20756.
- 12B. Jiang, X. G. Zhang, K. Jiang, D. Y. Wu, W. B. Cai, J. Am. Chem. Soc. 2018, 140, 2880–2889.
- 13F. P. García de Arquer, O. S. Bushuyev, P. D. Luna, C. T. Dinh, A. Seiftokaldani, M. I. Saidaminov, C. S. Tan, L. N. Quan, A. Proppe, M. G. Kibria, S. O. Kelley, D. Sinton, E. H. Sargent, Adv. Mater. 2018, 30, 1802858.
- 14W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, J. Mater. Chem. A 2019, 7, 4505–4515.
- 15X. Zhang, X. Sun, S. Guo, A. Bond, J. Zhang, Energy Environ. Sci. 2019, 12, 1334–1340.
- 16Z. Chen, K. Mou, X. Wang, L. Liu, Angew. Chem. Int. Ed. 2018, 57, 12790–12794; Angew. Chem. 2018, 130, 12972–12976.
- 17X. Zheng, P. De Luna, F. P. García de Arquer, B. Zhang, N. Becknell, M. B. Ross, Y. Li, M. N. Banis, Y. Li, M. Liu, O. Voznyy, C. T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang, E. H. Sargent, Joule 2017, 1, 794–805.
- 18F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei, Y. Xie, Nat. Commun. 2016, 7, 12697.
- 19Z. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai, H. Zhu, ACS Catal. 2016, 6, 6255–6264.
- 20N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320.
- 21H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.
- 22B. Kumar, V. Atla, J. P. Brian, S. Kumari, T. Q. Nguyen, M. Sunkara, J. M. Spurgeon, Angew. Chem. Int. Ed. 2017, 56, 3645–3649; Angew. Chem. 2017, 129, 3699–3703.
- 23S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734–1737.
- 24G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang, Z. Chen, Adv. Energy Mater. 2018, 8, 1802427.
- 25W. Ma, S. Xie, X. G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Y. Wu, Y. Wang, Nat. Commun. 2019, 10, 892.
- 26J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 5609–5613; Angew. Chem. 2019, 131, 5665–5669.
- 27P. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu, G. Zhang, Nanoscale 2019, 11, 7805–7812.
- 28C. Chen, J. F. Khosrowabadi Kotyk, S. W. Sheehan, Chem 2018, 4, 2571–2586.
- 29R. Pang, P. Tian, H. Jiang, M. Zhu, X. Su, Y. Wang, X. Yang, Y. Zhu, L. Song, C. Li, Natl. Sci. Rev. 2020, https://doi.org/10.1093/nsr/nwaa187.
- 30S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68–82.
- 31D. Ren, B. S. H. Ang, B. S. Yeo, ACS Catal. 2016, 6, 8239–8247.
- 32D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S. Yeo, ACS Catal. 2015, 5, 2814–2821.
- 33Y. X. Duan, F. L. Meng, K. H. Liu, S. S. Yi, S. J. Li, J. M. Yan, Q. Jiang, Adv. Mater. 2018, 30, 1706194.
- 34S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1700001.
- 35Y. X. Duan, K. H. Liu, Q. Zhang, J. M. Yan, Q. Jiang, Small Methods 2020, 4, 1900846.
- 36F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 505–509; Angew. Chem. 2017, 129, 520–524.
- 37J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore, F. Jiao, ACS Catal. 2015, 5, 4586–4591.
- 38Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242.
- 39K. H. Liu, H. X. Zhong, S. J. Li, Y. X. Duan, M. M. Shi, X. B. Zhang, J. M. Yan, Q. Jiang, Prog. Mater. Sci. 2018, 92, 64.
- 40D. D. Zhu, J. L. Liu, S. Z. Qiao, Adv. Mater. 2016, 28, 3423.
- 41K. H. Liu, J. Z. Wang, M. M. Shi, J. M. Yan, Q. Jiang, Adv. Energy Mater. 2019, 9, 1900276.
- 42R. K. Shervedani, A. Lasia, J. Electrochem. Soc. 1997, 144, 2652–2657.
- 43R. K. Shervedani, A. Lasia, J. Appl. Electrochem. 1999, 29, 979–986.
- 44R. C. Cui, B. Xu, H. J. Dong, C. C. Yang, Q. Jiang, Adv. Sci. 2020, 7, 1902547.
- 45D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E. Kim, S. I. Woo, ChemSusChem 2015, 8, 3092–3098.
- 46B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71–129.