Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono-Decker to Double-Decker Metallacrown
Dr. Jin Wang
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Quan-Wen Li
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Si-Guo Wu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Yan-Cong Chen
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRui-Chen Wan
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorGuo-Zhang Huang
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jun-Liang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Daniel Reta
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorDr. Marcus J. Giansiracusa
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorDr. Zhen-Xing Wang
Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Nicholas F. Chilton
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming-Liang Tong
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Jin Wang
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Quan-Wen Li
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Si-Guo Wu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Yan-Cong Chen
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRui-Chen Wan
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorGuo-Zhang Huang
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jun-Liang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Daniel Reta
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorDr. Marcus J. Giansiracusa
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorDr. Zhen-Xing Wang
Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Nicholas F. Chilton
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming-Liang Tong
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDedicated to Professor Xiao-Ming Chen on the occasion of his 60th birthday
Graphical Abstract
The magnetic hysteresis of a metallacrown magnet opens after introducing axial ferromagnetic by linking two mono-decker Dy[15-MCCu-5] units with a single hydroxide bridge to give the double-decker {Dy[15-MCCu-5]}2 single-molecule magnet in which the anisotropy axes of the two DyIII ions are nearly collinear and the magnetic relaxation times are approximately 200 000 times slower than for the mono-decker unit.
Abstract
Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu-5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu-5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu-5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII-diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy–Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d–f SMMs up to 625 cm−1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202014993-sup-0001-misc_information.pdf2.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Gatteschi, R. Sessoli, J. Villain, Molecular nanomagnets, Oxford University Press, Oxford, 2006;
- 1bR. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143.
- 2
- 2aM. N. Leuenberger, D. Loss, Nature 2001, 410, 789–793;
- 2bM. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 2009, 8, 194–197.
- 3
- 3aS.-D. Jiang, B.-W. Wang, H.-L. Sun, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730–4733;
- 3bJ.-L. Liu, Y.-C. Chen, Y.-Z. Zheng, W.-Q. Lin, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M.-L. Tong, Chem. Sci. 2013, 4, 3310–3316;
- 3cK. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2013, 135, 17952–17957;
- 3dL. Ungur, J. J. Le Roy, I. Korobkov, M. Murugesu, L. F. Chibotaru, Angew. Chem. Int. Ed. 2014, 53, 4413–4417; Angew. Chem. 2014, 126, 4502–4506;
- 3eY.-C. Chen, J.-L. Liu, L. Ungur, J. Liu, Q.-W. Li, L.-F. Wang, Z.-P. Ni, L. F. Chibotaru, X.-M. Chen, M.-L. Tong, J. Am. Chem. Soc. 2016, 138, 2829–2837;
- 3fY.-S. Ding, N. F. Chilton, R. E. P. Winpenny, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2016, 55, 16071–16074; Angew. Chem. 2016, 128, 16305–16308;
- 3gM. Gregson, N. F. Chilton, A.-M. Ariciu, F. Tuna, I. F. Crowe, W. Lewis, A. J. Blake, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, S. T. Liddle, Chem. Sci. 2016, 7, 155–165;
- 3hS. K. Gupta, T. Rajeshkumar, G. Rajaraman, R. Murugavel, Chem. Sci. 2016, 7, 5181–5191;
- 3iJ. Liu, Y.-C. Chen, J.-L. Liu, V. Vieru, L. Ungur, J.-H. Jia, L. F. Chibotaru, Y. Lan, W. Wernsdorfer, S. Gao, X.-M. Chen, M.-L. Tong, J. Am. Chem. Soc. 2016, 138, 5441–5450;
- 3jC. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature 2017, 548, 439–442;
- 3kF.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Angew. Chem. Int. Ed. 2017, 56, 11445–11449; Angew. Chem. 2017, 129, 11603–11607;
- 3lF.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science 2018, 362, 1400–1403;
- 3mJ.-L. Liu, Y.-C. Chen, M.-L. Tong, Chem. Soc. Rev. 2018, 47, 2431–2453;
- 3nM. Feng, Z.-Y. Ruan, Y.-C. Chen, M.-L. Tong, Chem. Commun. 2020, 56, 13702–13718;
- 3oT. Pugh, N. F. Chilton, R. A. Layfield, Angew. Chem. Int. Ed. 2016, 55, 11082–11085; Angew. Chem. 2016, 128, 11248–11251.
- 4
- 4aK. R. McClain, C. A. Gould, K. Chakarawet, S. J. Teat, T. J. Groshens, J. R. Long, B. G. Harvey, Chem. Sci. 2018, 9, 8492–8503;
- 4bC. A. Gould, K. R. McClain, J. M. Yu, T. J. Groshens, F. Furche, B. G. Harvey, J. R. Long, J. Am. Chem. Soc. 2019, 141, 12967–12973;
- 4cK.-X. Yu, J. G. C. Kragskow, Y.-S. Ding, Y.-Q. Zhai, D. Reta, N. F. Chilton, Y.-Z. Zheng, Chem 2020, 6, 1777–1793.
- 5
- 5aN. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650–3651;
- 5bY. C. Chen, J. L. Liu, W. Wernsdorfer, D. Liu, L. F. Chibotaru, X. M. Chen, M. L. Tong, Angew. Chem. Int. Ed. 2017, 56, 4996–5000; Angew. Chem. 2017, 129, 5078–5082;
- 5cS. Ghosh, S. Datta, L. Friend, S. Cardona-Serra, A. Gaita-Arino, E. Coronado, S. Hill, Dalton Trans. 2012, 41, 13697–13704;
- 5dS. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Arino, A. Camon, M. Evangelisti, F. Luis, M. J. Martinez-Perez, J. Sese, J. Am. Chem. Soc. 2012, 134, 14982–14990.
- 6
- 6aJ. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236–14239;
- 6bJ. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538–542;
- 6cS. Demir, M. I. Gonzalez, L. E. Darago, W. J. Evans, J. R. Long, Nat. Commun. 2017, 8, 2144–2152.
- 7
- 7aV. Mougel, L. Chatelain, J. Pécaut, R. Caciuffo, E. Colineau, J.-C. Griveau, M. Mazzanti, Nat. Chem. 2012, 4, 1011–1017;
- 7bL. Chatelain, P. S. Walsh James, J. Pécaut, F. Tuna, M. Mazzanti, Angew. Chem. Int. Ed. 2014, 53, 13434–13438; Angew. Chem. 2014, 126, 13652–13656.
- 8J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, A. K. Powell, Angew. Chem. Int. Ed. 2006, 45, 1729–1733; Angew. Chem. 2006, 118, 1761–1765.
- 9K. R. Vignesh, A. Soncini, S. K. Langley, W. Wernsdorfer, K. S. Murray, G. Rajaraman, Nat. Commun. 2017, 8, 1023–1034.
- 10G. Lu, Y. Liu, W. Deng, G.-Z. Huang, Y.-C. Chen, J.-L. Liu, Z.-P. Ni, M. Giansiracusa, N. F. Chilton, M.-L. Tong, Inorg. Chem. Front. 2020, 7, 2941–2948.
- 11
- 11aK. Katoh, T. Kajiwara, M. Nakano, Y. Nakazawa, W. Wernsdorfer, N. Ishikawa, B. K. Breedlove, M. Yamashita, Chem. Eur. J. 2011, 17, 117–122;
- 11bS. Sakaue, A. Fuyuhiro, T. Fukuda, N. Ishikawa, Chem. Commun. 2012, 48, 5337–5339;
- 11cJ. Kan, H. Wang, W. Sun, W. Cao, J. Tao, J. Jiang, Inorg. Chem. 2013, 52, 8505–8510;
- 11dJ. J. Le Roy, L. Ungur, I. Korobkov, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2014, 136, 8003–8010;
- 11eK. Katoh, B. K. Breedlove, M. Yamashita, Chem. Sci. 2016, 7, 4329–4340;
- 11fY. Horii, S. Kishiue, M. Damjanović, K. Katoh, B. K. Breedlove, M. Enders, M. Yamashita, Chem. Eur. J. 2018, 24, 4320–4327.
- 12K. C. Mondal, A. Sundt, Y. Lan, G. E. Kostakis, O. Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed. 2012, 51, 7550–7554; Angew. Chem. 2012, 124, 7668–7672.
- 13D. Aguilà, L. A. Barrios, V. Velasco, O. Roubeau, A. Repollés, P. J. Alonso, J. Sesé, S. J. Teat, F. Luis, G. Aromí, J. Am. Chem. Soc. 2014, 136, 14215–14222.
- 14
- 14aN. F. Chilton, C. A. Goodwin, D. P. Mills, R. E. Winpenny, Chem. Commun. 2015, 51, 101–103;
- 14bJ. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078–2085;
- 14cN. F. Chilton, Inorg. Chem. 2015, 54, 2097–2099.
- 15
- 15aS. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru, K. S. Murray, Angew. Chem. Int. Ed. 2013, 52, 12014–12019; Angew. Chem. 2013, 125, 12236–12241;
- 15bJ.-L. Liu, J.-Y. Wu, G.-Z. Huang, Y.-C. Chen, J.-H. Jia, L. Ungur, L. F. Chibotaru, X.-M. Chen, M.-L. Tong, Sci. Rep. 2015, 5, 16621–16629.
- 16
- 16aC. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2006, 45, 10022–10024;
- 16bG. Mezei, J. W. Kampf, S. Pan, K. R. Poeppelmeier, B. Watkins, V. L. Pecoraro, Chem. Commun. 2007, 1148–1150;
- 16cG. Mezei, C. M. Zaleski, V. L. Pecoraro, Chem. Rev. 2007, 107, 4933–5003;
- 16dJ. Jankolovits, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2014, 53, 7534–7546;
- 16eE. R. Trivedi, S. V. Eliseeva, J. Jankolovits, M. M. Olmstead, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2014, 136, 1526–1534;
- 16fQ.-W. Li, J.-L. Liu, J.-H. Jia, Y.-C. Chen, J. Liu, L.-F. Wang, M.-L. Tong, Chem. Commun. 2015, 51, 10291–10294;
- 16gQ.-W. Li, R.-C. Wan, Y.-C. Chen, J.-L. Liu, L.-F. Wang, J.-H. Jia, N. F. Chilton, M.-L. Tong, Chem. Commun. 2016, 52, 13365–13368.
- 17
- 17aM. J. Giansiracusa, E. Moreno-Pineda, R. Hussain, R. Marx, M. Martinez Prada, P. Neugebauer, S. Al-Badran, D. Collison, F. Tuna, J. van Slageren, S. Carretta, T. Guidi, E. J. L. McInnes, R. E. P. Winpenny, N. F. Chilton, J. Am. Chem. Soc. 2018, 140, 2504–2513;
- 17bE. Moreno Pineda, N. F. Chilton, R. Marx, M. Dörfel, D. O. Sells, P. Neugebauer, S.-D. Jiang, D. Collison, J. van Slageren, E. J. L. McInnes, R. E. P. Winpenny, Nat. Commun. 2014, 5, 5243.
- 18
- 18aN. Ishikawa, S. Otsuka, Y. Kaizu, Angew. Chem. Int. Ed. 2005, 44, 731–733; Angew. Chem. 2005, 117, 741–743;
- 18bX. Zhang, S. Liu, V. Vieru, N. Xu, C. Gao, B.-W. Wang, W. Shi, L. F. Chibotaru, S. Gao, P. Cheng, A. K. Powell, Chem. Eur. J. 2018, 24, 6079–6086;
- 18cK. Katoh, R. Asano, A. Miura, Y. Horii, T. Morita, B. K. Breedlove, M. Yamashita, Dalton Trans. 2014, 43, 7716–7725;
- 18dN. Ishikawa, T. Iino, Y. Kaizu, J. Am. Chem. Soc. 2002, 124, 11440–11447.
- 19J. Wang, Z.-Y. Ruan, Q.-W. Li, Y.-C. Chen, G.-Z. Huang, J.-L. Liu, D. Reta, N. F. Chilton, Z.-X. Wang, M.-L. Tong, Dalton Trans. 2019, 48, 1686–1692.
- 20Y. Liu, Y.-C. Chen, J. Liu, W.-B. Chen, G.-Z. Huang, S.-G. Wu, J. Wang, J.-L. Liu, M.-L. Tong, Inorg. Chem. 2020, 59, 687–694.
- 21
- 21aV. L. Pecoraro, J. J. Bodwin, A. D. Cutland, J. Solid State Chem. 2000, 152, 68–77;
- 21bA. D. Cutland, J. A. Halfen, J. W. Kampf, V. L. Pecoraro, J. Am. Chem. Soc. 2001, 123, 6211–6212.
- 22S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 2005, 249, 1693–1708.
- 23
- 23aY. N. Guo, G. F. Xu, P. Gamez, L. Zhao, S. Y. Lin, R. Deng, J. Tang, H. J. Zhang, J. Am. Chem. Soc. 2010, 132, 8538–8539;
- 23bI. J. Hewitt, J. Tang, N. T. Madhu, C. E. Anson, Y. Lan, J. Luzon, M. Etienne, R. Sessoli, A. K. Powell, Angew. Chem. Int. Ed. 2010, 49, 6352–6356; Angew. Chem. 2010, 122, 6496–6500;
- 23cM. Jeletic, P. H. Lin, J. J. Le Roy, I. Korobkov, S. I. Gorelsky, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 19286–19289;
- 23dJ. Ruiz, A. J. Mota, A. Rodríguez-Diéguez, S. Titos, J. M. Herrera, E. Ruiz, E. Cremades, J. P. Costes, E. Colacio, Chem. Commun. 2012, 48, 7916–7918.
- 24N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164–1175.
- 25F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, J. Comput. Chem. 2016, 37, 506–541.
- 26M. E. Lines, J. Chem. Phys. 1971, 55, 2977–2984.
- 27L. Ungur, L. F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086–20090.
- 28S.-G. Wu, Z.-Y. Ruan, G.-Z. Huang, J.-Y. Zheng, V. Vieru, G. Taran, J. Wang, Y.-C. Chen, J.-L. Liu, L. T. A. Ho, L. F. Chibotaru, W. Wernsdorfer, X.-M. Chen, M.-L. Tong, Chem 2021, 10.1016/j.chempr.2020.12.022.
- 29
- 29aD. S. Krylov, F. Liu, A. Brandenburg, L. Spree, V. Bon, S. Kaskel, A. U. B. Wolter, B. Büchner, S. M. Avdoshenko, A. A. Popov, Phys. Chem. Chem. Phys. 2018, 20, 11656–11672;
- 29bL. Escalera-Moreno, J. J. Baldovi, A. Gaita-Arino, E. Coronado, Chem. Sci. 2018, 9, 3265–3275;
- 29cM. Atzori, E. Morra, L. Tesi, A. Albino, M. Chiesa, L. Sorace, R. Sessoli, J. Am. Chem. Soc. 2016, 138, 11234–11244;
- 29dC. J. Yu, M. J. Graham, J. M. Zadrozny, J. Niklas, M. D. Krzyaniak, M. R. Wasielewski, O. G. Poluektov, D. E. Freedman, J. Am. Chem. Soc. 2016, 138, 14678–14685.
- 30N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, A. Soncini, Nat. Commun. 2013, 4, 2551.