4D-Printing of Photoswitchable Actuators
Dr. Xili Lu
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCedric P. Ambulo
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Search for more papers by this authorSuitu Wang
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorLaura K. Rivera-Tarazona
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Hyun Kim
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Sensors and Electron Devices Directorate, CCDC Army Research Laboratory, Adelphi, MD, 20783 USA
Search for more papers by this authorKyle Searles
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Taylor H. Ware
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
Current address: Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Xili Lu
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCedric P. Ambulo
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Search for more papers by this authorSuitu Wang
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorLaura K. Rivera-Tarazona
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Hyun Kim
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Sensors and Electron Devices Directorate, CCDC Army Research Laboratory, Adelphi, MD, 20783 USA
Search for more papers by this authorKyle Searles
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Taylor H. Ware
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA
Current address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
Current address: Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorGraphical Abstract
Shape-switching liquid crystal elastomers are formulated where light is used to trigger a shape change which is then stable indefinitely. The original shape can be recovered on heating. These materials can be 4D printed into reconfigurable Braille-like actuators capable of displaying letters “L”, “C” and “E” by switching the shape-morphing of the Archimedean chord patterns with UV light and heating.
Abstract
Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D-print shape-switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape-switching LCEs is that light induces long-lived, deformation that can be recovered on-demand by heating. UV-light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape-switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape-switching properties, we print Braille-like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202012618-sup-0001-misc_information.pdf1.4 MB | Supplementary |
anie202012618-sup-0001-Movie_S1.mp44.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Tibbits, Architectural Design 2014, 84, 116–121.
- 2
- 2aD. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, Sci. Rep. 2014, 4, 7422;
- 2bA. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413–418.
- 3Y. Kim, H. Yuk, R. Zhao, S. A. Chester, X. Zhao, Nature 2018, 558, 274–279.
- 4Z. Ding, C. Yuan, X. Peng, T. Wang, H. J. Qi, M. L. Dunn, Sci. Adv. 2017, 3, e1602890.
- 5H. Yang, W. R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, X. Chen, Adv. Mater. 2017, 29, 1701627.
- 6
- 6aS. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, Science 2014, 345, 644–646;
- 6bM. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, R. J. Wood, Nature 2016, 536, 451–455.
- 7
- 7aG. Villar, A. D. Graham, H. Bayley, Science 2013, 340, 48–52;
- 7bR. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye, G. E. Green, Sci. Transl. Med. 2015, 7, 285ra64.
- 8M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, S. Magdassi, Adv. Mater. 2016, 28, 4449–4554.
- 9Y. Haga, W. Makishi, K. Iwami, K. Totsu, K. Nakamura, M. Esashi, Sens. Actuators A 2005, 119, 316–322.
- 10
- 10aC. Ohm, M. Brehmer, R. Zentel, Adv. Mater. 2010, 22, 3366–3387;
- 10bT. J. White, D. J. Broer, Nat. Mater. 2015, 14, 1087–1098.
- 11
- 11aS. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga, P. Fischer, Nat. Mater. 2016, 15, 647–653;
- 11bH. Zeng, P. Wasylczyk, D. S. Wiersma, A. Priimagi, Adv. Mater. 2018, 30, 1703554.
- 12
- 12aH. Wermter, H. Finkelmann, e-polym. 2001, 1, 013;
10.1515/epoly.2001.1.1.111 Google Scholar
- 12bD. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, B. R. Ratna, Macromolecules 2001, 34, 5868–5875.
- 13H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, S. Yang, Proc. Natl. Acad. Sci. USA 2018, 115, 7206–7211.
- 14
- 14aM. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nat. Mater. 2004, 3, 307–310;
- 14bZ. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, Y. Ji, Nat. Mater. 2014, 13, 36–41.
- 15
- 15aT. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, Science 2015, 347, 982–984;
- 15bS. Iamsaard, S. J. Aßhoff, B. Matt, T. Kudernac, J. J. L. M. Cornelissen, S. P. Fletcher, N. Katsonis, Nat. Chem. 2014, 6, 229–235.
- 16
- 16aM.-H. Li, P. Keller, J. Yang, P.-A. Albouy, Adv. Mater. 2004, 16, 1922–1925;
- 16bH. Yang, A. Buguin, J.-M. Taulemesse, K. Kaneko, S. Méry, A. Bergeret, P. Keller, J. Am. Chem. Soc. 2009, 131, 15000–15004;
- 16cY. Yao, J. T. Waters, A. V. Shneidman, J. Cui, X. Wang, N. K. Mandsberg, S. Li, A. C. Balazs, J. Aizenberg, Proc. Natl. Acad. Sci. USA 2018, 115, 12950–12955;
- 16dJ. T. Waters, S. Li, Y. Yao, M. M. Lerch, M. Aizenberg, J. Aizenberg, A. C. Balazs, Sci. Adv. 2020, 6, eaay5349.
- 17
- 17aC. P. Ambulo, J. J. Burroughs, J. M. Boothby, H. Kim, M. R. Shankar, T. H. Ware, ACS Appl. Mater. Interfaces 2017, 9, 37332–37339;
- 17bM. López-Valdeolivas, D. Liu, D. J. Broer, C. Sánchez-Somolinos, Macromol. Rapid Commun. 2018, 39, 1700710;
- 17cA. Kotikian, R. L. Truby, J. W. Boley, T. J. White, J. A. Lewis, Adv. Mater. 2018, 30, 1706164.
- 18E. C. Davidson, A. Kotikian, S. Li, J. Aizenberg, J. A. Lewis, Adv. Mater. 2020, 32, 1905682.
- 19S.-k. Ahn, T. H. Ware, K. M. Lee, V. P. Tondiglia, T. J. White, Adv. Funct. Mater. 2016, 26, 5819–5826.
- 20Y. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145.
- 21
- 21aM. Yamada, M. Kondo, J.-i. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, T. Ikeda, Angew. Chem. Int. Ed. 2008, 47, 4986–4988; Angew. Chem. 2008, 120, 5064–5066;
- 21bX. Lu, S. Guo, X. Tong, H. Xia, Y. Zhao, Adv. Mater. 2017, 29, 1606467;
- 21cJ. J. Wie, M. R. Shankar, T. J. White, Nat. Commun. 2016, 7, 13260.
- 22
- 22aY. Liu, B. Xu, S. Sun, J. Wei, L. Wu, Y. Yu, Adv. Mater. 2017, 29, 1604792;
- 22bX. Lu, H. Zhang, G. Fei, B. Yu, X. Tong, H. Xia, Y. Zhao, Adv. Mater. 2018, 30, 1706597.
- 23H. Shahsavan, A. Aghakhani, H. Zeng, Y. Guo, Z. S. Davidson, A. Priimagi, M. Sitti, Proc. Natl. Acad. Sci. USA 2020, 117, 5125–5133.
- 24
- 24aK. Kumar, C. Knie, D. Bléger, M. A. Peletier, H. Friedrich, S. Hecht, D. J. Broer, M. G. Debije, A. P. H. J. Schenning, Nat. Commun. 2016, 7, 11975;
- 24bA. H. Gelebart, G. Vantomme, E. W. Meijer, D. J. Broer, Adv. Mater. 2017, 29, 1606712;
- 24cH. Zeng, M. Lahikainen, L. Liu, Z. Ahmed, O. M. Wani, M. Wang, H. Yang, A. Priimagi, Nat. Commun. 2019, 10, 5057.
- 25S. J. Aßhoff, F. Lancia, S. Iamsaard, B. Matt, T. Kudernac, S. P. Fletcher, N. Katsonis, Angew. Chem. Int. Ed. 2017, 56, 3261–3265; Angew. Chem. 2017, 129, 3309–3313.
- 26A. H. Gelebart, D. J. Mulder, M. Varga, A. Konya, G. Vantomme, E. W. Meijer, R. L. B. Selinger, D. J. Broer, Nature 2017, 546, 632–636.
- 27
- 27aT. Ikeda, J.-i. Mamiya, Y. Yu, Angew. Chem. Int. Ed. 2007, 46, 506–528; Angew. Chem. 2007, 119, 512–535;
- 27bC. Barrett, A. Natansohn, P. Rochon, Chem. Mater. 1995, 7, 899–903.
- 28
- 28aS. Iamsaard, E. Anger, S. J. Aßhoff, A. Depauw, S. P. Fletcher, N. Katsonis, Angew. Chem. Int. Ed. 2016, 55, 9908–9912; Angew. Chem. 2016, 128, 10062–10066;
- 28bB. R. Donovan, V. M. Matavulj, S.-k. Ahn, T. Guin, T. J. White, Adv. Mater. 2019, 31, 1805750.
- 29A. Ryabchun, Q. Li, F. Lancia, I. Aprahamian, N. Katsonis, J. Am. Chem. Soc. 2019, 141, 1196–1200.
- 30
- 30aS. H. M. Söntjens, R. P. Sijbesma, M. H. P. van Genderen, E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 7487–7493;
- 30bB. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, E. W. Meijer, Adv. Mater. 2000, 12, 874–878.
- 31
- 31aJ. Li, J. A. Viveros, M. H. Wrue, M. Anthamatten, Adv. Mater. 2007, 19, 2851–2855;
- 31bT. Ware, K. Hearon, A. Lonnecker, K. L. Wooley, D. J. Maitland, W. Voit, Macromolecules 2012, 45, 1062–1069;
- 31cG. Zhang, Q. Zhao, W. Zou, Y. Luo, T. Xie, Adv. Funct. Mater. 2016, 26, 931–937.
- 32
- 32aY. Wu, Y. Yang, X. Qian, Q. Chen, Y. Wei, Y. Ji, Angew. Chem. Int. Ed. 2020, 59, 4778–4784; Angew. Chem. 2020, 132, 4808–4814;
- 32bM. O. Saed, A. Gablier, E. M. Terentejv, Adv. Funct. Mater. 2020, 30, 1906458;
- 32cM. O. Saed, E. M. Terentjev, ACS Macro Lett. 2020, 9, 749–755.
- 33A. Gandini, Prog. Polym. Sci. 2013, 38, 1–29.
- 34Z. Jiang, Y. Xiao, L. Yin, L. Han, Y. Zhao, Angew. Chem. Int. Ed. 2020, 59, 4925–4931; Angew. Chem. 2020, 132, 4955–4961.
- 35
- 35aT. Yoshino, M. Kondo, J.-i. Mamiya, M. Kinoshita, Y. Yu, T. Ikeda, Adv. Mater. 2010, 22, 1361–1363;
- 35bM. Kondo, Y. Yu, T. Ikeda, Angew. Chem. Int. Ed. 2006, 45, 1378–1382; Angew. Chem. 2006, 118, 1406–1410.
- 36
- 36aH. Yu, T. Ikeda, Adv. Mater. 2011, 23, 2149–2180;
- 36bT. Ube, T. Ikeda, Angew. Chem. Int. Ed. 2014, 53, 10290–10299; Angew. Chem. 2014, 126, 10456–10465.
- 37L. Cheng, Y. Torres, K. M. Lee, A. J. McClung, J. Baur, T. J. White, W. S. Oates, J. Appl. Phys. 2012, 112, 013513.
- 38
- 38aN. Torras, K. E. Zinoviev, C. J. Camargo, E. M. Campo, H. Campanella, J. Esteve, J. E. Marshall, E. M. Terentjev, M. Omastová, I. Krupa, P. Teplický, B. Mamojka, P. Bruns, B. Roeder, M. Vallribera, R. Malet, S. Zuffanelli, V. Soler, J. Roig, N. Walker, D. Wenn, F. Vossen, F. M. H. Crompvoets, Sens. Actuators A 2014, 208, 104–112;
- 38bC. J. Camargo, H. Campanella, J. E. Marshall, N. Torras, K. Zinoviev, E. M. Terentjev, J. Esteve, J. Micromech. Microeng. 2012, 22, 075009.
- 39C. D. Modes, K. Bhattacharya, M. Warner, Proc. R. Soc. London Ser. A 2011, 467, 1121–1140.
- 40L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, D. J. Broer, Angew. Chem. Int. Ed. 2012, 51, 12469–12472; Angew. Chem. 2012, 124, 12637–12640.