Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, n-Type BiTe
Manisha Samanta
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorDr. Koushik Pal
Theoretical Sciences Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorProf. Umesh V. Waghmare
Theoretical Sciences Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorCorresponding Author
Prof. Kanishka Biswas
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorManisha Samanta
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorDr. Koushik Pal
Theoretical Sciences Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorProf. Umesh V. Waghmare
Theoretical Sciences Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorCorresponding Author
Prof. Kanishka Biswas
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, India
Search for more papers by this authorGraphical Abstract
Highs and lows: Intrinsically low lattice thermal conductivity (κlat) and high carrier mobility (μ) occurs in BiTe, which is facilitated by its unique dual topological quantum phases. It is a weak topological insulator (WTI) as a result of its layered hetero-structure, and thus it exhibits low thermal conductivity; but simultaneously BiTe is also a topological crystalline insulator (TCI) and thus it has high carrier mobility.
Abstract
A challenge in thermoelectrics is to achieve intrinsically low thermal conductivity in crystalline solids while maintaining a high carrier mobility (μ). Topological quantum materials, such as the topological insulator (TI) or topological crystalline insulator (TCI) can exhibit high μ. Weak topological insulators (WTI) are of interest because of their layered hetero-structural nature which has a low lattice thermal conductivity (κlat). BiTe, a unique member of the (Bi2)m(Bi2Te3)n homologous series (m:n=1:2), has both the quantum states, TCI and WTI, which is distinct from the conventional strong TI, Bi2Te3 (where m:n=0:1). Herein, we report intrinsically low κlat of 0.47–0.8 W m−1 K−1 in the 300–650 K range in BiTe resulting from low energy optical phonon branches which originate primarily from the localized vibrations of Bi bilayer. It has high μ≈516 cm2 V−1 s−1 and 707 cm2 V−1 s−1 along parallel and perpendicular to the spark plasma sintering (SPS) directions, respectively, at room temperature.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202000343-sup-0001-misc_information.pdf869.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616; Angew. Chem. 2009, 121, 8768.
- 2G. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.
- 3Z. H. Ge, L. D. Zhao, D. Wu, X. Liu, B. P. Zhang, J. F. Li, J. He, Mater. Today 2016, 19, 227.
- 4L.-D. Zhao, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci. 2014, 7, 251.
- 5X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, Z. Ren, Mater. Today 2018, 21, 974.
- 6K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
- 7B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.
- 8M. Samanta, K. Biswas, J. Am. Chem. Soc. 2017, 139, 9382.
- 9H. J. Wu, L.-D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis, J. Q. He, Nat. Commun. 2014, 5, 4515.
- 10M. K. Jana, K. Biswas, ACS Energy Lett. 2018, 3, 1315.
- 11B. Li, H. Wang, Y. Kawakita, Q. Zhang, M. Feygenson, H. L. Yu, D. Wu, K. Ohara, T. Kikuchi, K. Shibata, T. Yamada, X. K. Ning, Y. Chen, J. Q. He, D. Vaknin, R. Q. Wu, K. Nakajima, M. G. Kanatzidis, Nat. Mater. 2018, 17, 226.
- 12S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, L. Lindsay, Science 2018, 360, 1455.
- 13C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science 2018, 360, 778.
- 14H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
- 15W. Qiu, L. Xi, P. Wei, X. Ke, J. Yang, W. Zhang, Proc. Natl. Acad. Sci. USA 2014, 111, 15031.
- 16M. Samanta, K. Pal, P. Pal, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2018, 140, 5866.
- 17E. J. Skoug, D. T. Morelli, Phys. Rev. Lett. 2011, 107, 235901.
- 18M. K. Jana, K. Pal, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2016, 55, 7792; Angew. Chem. 2016, 128, 7923.
- 19M. Dutta, S. Matteppanavar, M. V. D. Prasad, J. Pandey, A. Warankar, P. Mandal, A. Soni, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2019, 141, 20293.
- 20A. Banik, T. Ghosh, R. Arora, M. Dutta, J. Pandey, S. Acharya, A. Soni, U. V. Waghmare, K. Biswas, Energy Environ. Sci. 2019, 12, 589.
- 21J. Gooth, G. Schierning, C. Felser, K. Nielsch, MRS Bull. 2018, 43, 187.
- 22S. Roychowdhury, M. Samanta, A. Banik, K. Biswas, J. Solid State Chem. 2019, 275, 103.
- 23L. Müchler, H. Zhang, S. Chadov, B. Yan, F. Casper, J. Kübler, S. C. Zhang, C. Felser, Angew. Chem. Int. Ed. 2012, 51, 7221; Angew. Chem. 2012, 124, 7333.
- 24J. P. Heremans, R. J. Cava, N. Samarth, Nat. Rev. Mater. 2017, 2, 17049.
- 25A. Banik, S. Roychowdhury, K. Biswas, Chem. Commun. 2018, 54, 6573.
- 26G. Tan, L.-D. Zhao, F. Shi, J. W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. P. Dravid, C. Uher, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 7006.
- 27S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2015, 54, 15241; Angew. Chem. 2015, 127, 15456.
- 28L.-C. Chen, P.-Q. Chen, W.-J. Li, Q. Zhang, V. V. Struzhkin, A. F. Goncharov, Z. Ren, X.-J. Chen, Nat. Mater. 2019, 18, 1321.
- 29P. Wei, J. Yang, L. Guo, S. Wang, L. Wu, X. Xu, W. Zhao, Q. Zhang, W. Zhang, M. S. Dresselhaus, J. Yang, Adv. Funct. Mater. 2016, 26, 5360.
- 30P. A. Sharma, A. L. L. Sharma, D. L. Medlin, A. M. Morales, N. Yang, M. Barney, J. He, F. Drymiotis, J. Turner, T. M. Tritt, Phys. Rev. B 2011, 83, 235209.
- 31J. W. G. Bos, F. Faucheux, R. A. Downie, A. Marcinkova, AIP Conf. Proc. 2012, 1449, 83.
- 32M. Eschbach, M. Lanius, C. Niu, E. Młyńczak, P. Gospodarič, J. Kellner, P. Schüffelgen, M. Gehlmann, S. Döring, E. Neumann, M. Luysberg, G. Mussler, L. Plucinski, M. Morgenstern, D. Grützmacher, G. Bihlmayer, S. Blügel, C. M. Schneider, Nat. Commun. 2017, 8, 14976.
- 33S. Il Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 2015, 348, 109.
- 34Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen, Science 2009, 325, 178.
- 35T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, Q.-K. Xue, Phys. Rev. Lett. 2009, 103, 266803.
- 36H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Nat. Phys. 2009, 5, 438.
- 37K. Majhi, K. Pal, H. Lohani, A. Banerjee, P. Mishra, A. K. Yadav, R. Ganesan, B. R. Sekhar, U. V. Waghmare, P. S. Anil Kumar, Appl. Phys. Lett. 2017, 110, 162102.
- 38C. Lin, G. Kim, D. Ginting, K. Ahn, J. Rhyee, ACS Appl. Mater. Interfaces 2018, 10, 10927.
- 39T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, N. P. Ong, Nat. Mater. 2015, 14, 280.
- 40Y. Xiao, D. Wang, B. Qin, J. Wang, G. Wang, L.-D. Zhao, J. Am. Chem. Soc. 2018, 140, 13097.
- 41J. F. Khoury, A. J. E. Rettie, M. A. Khan, N. J. Ghimire, I. Robredo, J. E. Pfluger, K. Pal, C. Wolverton, A. Bergara, J. S. Jiang, L. M. Schoop, M. G. Vergniory, J. F. Mitchell, D. Y. Chung, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 19130.
- 42K. Pal, S. Anand, U. V. Waghmare, J. Mater. Chem. C 2015, 3, 12130.
- 43L. Xi, S. Pan, X. Li, Y. Xu, J. Ni, X. Sun, J. Yang, J. Luo, J. Xi, W. Zhu, X. Li, D. Jiang, R. Dronskowski, X. Shi, G. J. Snyder, W. Zhang, J. Am. Chem. Soc. 2018, 140, 10785.
- 44J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. Il Kim, E. Lee, Y. S. Kwon, J. H. Shim, G. Kotliar, Nature 2009, 459, 965.
- 45L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
- 46Y. Li, X. Shi, D. Ren, J. Chen, L. Chen, Energies 2015, 8, 6275.
- 47S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang, J. Yang, Energy Environ. Sci. 2016, 9, 3436.
- 48X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S. J. Pennycook, L.-D. Zhao, Adv. Funct. Mater. 2019, 29, 1806558.
- 49R. O. Cahill, D. G. Watson, S. K. Pohl, Phys. Rev. B 1992, 46, 6131.
- 50X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 2011, 133, 7837.
- 51T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Rev. Mod. Phys. 2014, 86, 669.
- 52Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng, L.-D. Zhao, Phys. Rev. B 2016, 94, 125203.
- 53K. Pal, J. He, C. Wolverton, Chem. Mater. 2018, 30, 7760.
- 54K. Pal, Y. Xia, J. He, C. Wolverton, Phys. Rev. Mater. 2019, 3, 085402.
- 55M. D. Nielsen, V. Ozolins, J. P. Heremans, Energy Environ. Sci. 2013, 6, 570.