Greatly Improving Electrochemical N2 Reduction over TiO2 Nanoparticles by Iron Doping
Tongwei Wu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorXiaojuan Zhu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002 Sichuan, China
Search for more papers by this authorZhe Xing
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorShiyong Mou
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorChengbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorYanxia Qiao
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorDr. Qian Liu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorYonglan Luo
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002 Sichuan, China
Search for more papers by this authorDr. Xifeng Shi
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 Shandong, China
Search for more papers by this authorProf. Yanning Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorCorresponding Author
Prof. Xuping Sun
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorTongwei Wu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorXiaojuan Zhu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002 Sichuan, China
Search for more papers by this authorZhe Xing
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorShiyong Mou
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorChengbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorYanxia Qiao
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorDr. Qian Liu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorYonglan Luo
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002 Sichuan, China
Search for more papers by this authorDr. Xifeng Shi
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 Shandong, China
Search for more papers by this authorProf. Yanning Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorCorresponding Author
Prof. Xuping Sun
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
Search for more papers by this authorGraphical Abstract
Strike while the iron is hot: Iron doping greatly improves electrochemical N2 reduction over TiO2 nanoparticle for ambient N2-to-NH3 fixation with excellent selectivity. The Fe-TiO2 catalyst attains a high Faradaic efficiency of 25.6 % and a large NH3 yield of 25.47 μg h−1 mgcat−1 at −0.40 V in 0.5 m LiClO4 versus a reversible hydrogen electrode. The synergistic effect of bi-Ti3+ sites and oxygen vacancies are responsible for the superior activity.
Abstract
Titanium-based catalysts are needed to achieve electrocatalytic N2 reduction to NH3 with a large NH3 yield and a high Faradaic efficiency (FE). One of the cheapest and most abundant metals on earth, iron, is an effective dopant for greatly improving the nitrogen reduction reaction (NRR) performance of TiO2 nanoparticles in ambient N2-to-NH3 conversion. In 0.5 m LiClO4, Fe-doped TiO2 catalyst attains a high FE of 25.6 % and a large NH3 yield of 25.47 μg h−1 mgcat−1 at −0.40 V versus a reversible hydrogen electrode. This performance compares favorably to those of all previously reported titanium- and iron-based NRR electrocatalysts in aqueous media. The catalytic mechanism is further probed with theoretical calculations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911153-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. Smil, Nature 1999, 400, 415.
- 2R. Schlögl, Angew. Chem. Int. Ed. 2003, 42, 2004–2008; Angew. Chem. 2003, 115, 2050–2055.
- 3T. Vegge, R. Z. Sørensen, A. Klerke, J. S. Hummelshøj, T. Johannessen, J. K. Nørskov, C. H. Christensen, Indirect Hydrogen Storage in Metal Ammines, British Welding Research Association, 2008, p. 533–564.
- 4I. Dybkjaer, Ammonia, Catalysis and Manufacture (Ed.: ), Springer, Heidelberg, 1995, p. 199–308.
- 5V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today 2017, 286, 2–13.
- 6C. Guo, J. Ran, A. Vasileff, S. Qiao, Energy Environ. Sci. 2018, 11, 45–56.
- 7R. Zhao, H. Xie, L. Chang, X. Zhang, X. Zhu, X. Tong, T. Wang, Y. Luo, P. Wei, Z. Wang, X. Sun, EnergyChem 2019, 1, 100011.
10.1016/j.enchem.2019.100011 Google Scholar
- 8M. Shi, D. Bao, B. R. Wulan, Y. Li, Y. Zhang, J. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.
- 9D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan, Q. Jiang, X. Zhang, Adv. Mater. 2017, 29, 1604799.
- 10H. Huang, L. Xia, X. Shi, A. M. Asiri, X. Sun, Chem. Commun. 2018, 54, 11427–11430.
- 11J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 2018, 9, 1795.
- 12Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Adv. Energy Mater. 2019, 9, 1803935.
- 13J. Zhao, J. Yang, L. Ji, H. Wang, H. Chen, Z. Niu, Q. Liu, T. Li, G. Cui, X. Sun, Chem. Commun. 2019, 55, 4266–4269.
- 14Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, P. Gao, B. Li, B. Tang, X. Sun, Adv. Sci. 2018, 5, 1801182.
- 15X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Energy Mater. 2018, 8, 1801357.
- 16X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang, X. Sun, ACS Catal. 2019, 9, 4609–4615.
- 17C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 2018, 57, 6073–6076; Angew. Chem. 2018, 130, 6181–6184.
- 18W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, X. Sun, Nat. Commun. 2018, 9, 3485.
- 19S. Zhang, C. Zhao, Y. Liu, W. Li, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem. Commun. 2019, 55, 2952–2955.
- 20S. Gao, Y. Zhu, Y. Chen, M. Tian, Y. Yang, T. Jiang, Z. Wang, Mater. Today 2019, 28, 17–24.
- 21Y. Wang, M. Shi, D. Bao, F. Meng, Q. Zhang, Y. Zhou, K. Liu, Y. Zhang, J. Wang, Z. Chen, D. Liu, Z. Jiang, M. Luo, L. Gu, Q. Zhang, X. Cao, Y. Yao, M. Shao, Y. Zhang, X. Zhang, J. Chen, J. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2019, 58, 9464–9469; Angew. Chem. 2019, 131, 9564–9569.
- 22L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. Xin, Angew. Chem. Int. Ed. 2019, 58, 2321–2325; Angew. Chem. 2019, 131, 2343–2347.
- 23L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Qiao, ACS Catal. 2019, 9, 2902–2908.
- 24H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694.
- 25W. Yin, B. Wen, C. Zhou, A. Selloni, L. Liu, Surf. Sci. Rep. 2018, 73, 58–82.
- 26L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang, X. Sun, Nanoscale 2019, 11, 1555–1562.
- 27R. Zhang, X. Ren, X. Shi, F. Xie, F. Zheng, X. Guo, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 28251–28255.
- 28Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo, X. Sun, ACS Sustainable Chem. Eng. 2019, 7, 117–122.
- 29Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. Demner, H. Jiao, M. Oschatz, Angew. Chem. Int. Ed. 2019, 58, 13101–13106; Angew. Chem. 2019, 131, 13235–13240.
- 30T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y. Luo, X. Sun, Small Methods 2019, 3, 1900356.
- 31N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Nat. Commun. 2019, 10, 2877.
- 32P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2014, 53, 12855–12859; Angew. Chem. 2014, 126, 13069–13073.
- 33T. M. Buscagan, P. H. Oyala, J. C. Peters, Angew. Chem. Int. Ed. 2017, 56, 6921–6926; Angew. Chem. 2017, 129, 7025–7030.
- 34S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem. Int. Ed. 2017, 56, 2699–2703; Angew. Chem. 2017, 129, 2743–2747.
- 35J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y. E. Sung, J. Choi, H. S. Park, ACS Sustainable Chem. Eng. 2017, 5, 10986–10995.
- 36Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie, X. Sun, Nanoscale 2018, 10, 14386–14389.
- 37L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden, X. Feng, ACS Catal. 2018, 8, 9312–9319.
- 38X. Zhu, H. Wang, Z. Liu, R. Zhao, H. Chen, T. Wang, F. Wang, Y. Luo, Y. Wu, X. Sun, Chem. Commun. 2019, 55, 3987–3990.
- 39X. Zhao, X. Lan, D. Yu, H. Fu, Z. Liu, T. Mu, Chem. Commun. 2018, 54, 13010–13013.
- 40S. Xu, S. Pan, Y. Xu, Y. Luo, Y. Zhang, G. Li, J. Hazard. Mater. 2015, 283, 7–13.
- 41M. Zhou, J. Yu, B. Cheng, H. Yu, Mater. Chem. Phys. 2005, 93, 159–163.
- 42C. Wang, C. Bottcher, D. W. Bahnemann, J. K. Dohrmann, J. Mater. Chem. 2003, 13, 2322–2329.
- 43J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal. B 2006, 62, 329–335.
- 44H. Khan, I. Swati, Ind. Eng. Chem. Res. 2016, 55, 6619–6633.
- 45E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. D. MacElroy, J. A. Sullivan, K. R. Thampi, J. Phys. Chem. C 2012, 116, 16511–16521.
- 46C. Yang, X. Zhang, J. Qin, X. Shen, R. Yu, M. Ma, R. Liu, J. Catal. 2017, 347, 36–44.
- 47B. Li, Z. Zhao, F. Gao, X. Wang, J. Qiu, Appl. Catal. B 2014, 147, 958–964.
- 48D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836–841.
- 49G. W. Watt, J. D. Chrisp, Anal. Chem. 1952, 24, 2006–2008.
- 50X. Ren, J. Zhao, Q. Wei, Y. Ma, G. Cui, A. M. Asiri, B. Li, B. Tang, X. Sun, ACS Cent. Sci. 2019, 5, 116–121.
- 51P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong, C. Ao, W. Yan, L. Zhang, W. Chu, C. Wu, Y. Xie, Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.
- 52J. González-Torres, L. Cipriano, E. Poulain, V. Domínguez-Soria, R. García-Cruz, O. Olvera-Neria, J. Mol. Model. 2018, 24, 276.
- 53H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929–10936.