Surface Capping Agents and Their Roles in Shape-Controlled Synthesis of Colloidal Metal Nanocrystals
Dr. Tung-Han Yang
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorYifeng Shi
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorAnnemieke Janssen
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Younan Xia
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332 USA
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorDr. Tung-Han Yang
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorYifeng Shi
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorAnnemieke Janssen
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Younan Xia
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332 USA
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorGraphical Abstract
A pivotal role in directing the growth of colloidal metal nanocrystals into diverse but well-controlled shapes is played by surface capping agents. This article offers a comprehensive review of capping agents as well as their use in engineering the surface structures and catalytic properties of metal nanocrystals.
Abstract
Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well-controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals. We then present representative examples to highlight the various capping agents, including their binding selectivity, molecular-level interaction with a metal surface, and impacts on the growth of metal nanocrystals. We also showcase progress in leveraging capping agents to generate nanocrystals with complex structures and/or enhance their catalytic properties. Finally, we discuss various strategies for the exchange or removal of capping agents, together with perspectives on future directions.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911135-sup-0001-misc_information.pdf160.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60; Angew. Chem. 2009, 121, 62.
- 2C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025.
- 3L. M. Liz-Marzán, Mater. Today 2004, 7, 26.
- 4C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109, 13857.
- 5Y. Xia, K. D. Gilroy, H.-C. Peng, X. Xia, Angew. Chem. Int. Ed. 2017, 56, 60; Angew. Chem. 2017, 129, 60.
- 6K. D. Gilroy, A. Ruditskiy, H. C. Peng, D. Qin, Y. Xia, Chem. Rev. 2016, 116, 10414.
- 7S. Lal, S. Link, N. J. Halas, Nat. Photonics 2007, 1, 641.
- 8S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 2014, 26, 6670.
- 9A. Ruditskiy, H. C. Peng, Y. Xia, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 327.
- 10X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 2013, 4, 1444.
- 11Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu, H. Liu, Y. Li, Y. Huang, Adv. Mater. 2019, 31, 1808115.
- 12Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Chem. Soc. Rev. 2011, 40, 4167.
- 13G. Konstantatos, E. H. Sargent, Nat. Nanotechnol. 2010, 5, 391.
- 14K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
- 15K. M. Mayer, J. H. Hafner, Chem. Rev. 2011, 111, 3828.
- 16Y. C. Cao, R. Jin, C. A. Mirkin, Science 2002, 297, 1536.
- 17E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, Chem. Soc. Rev. 2012, 41, 2740.
- 18X. Yang, M. Yang, B. Pang, M. Vara, Y. Xia, Chem. Rev. 2015, 115, 10410.
- 19B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, L. M. Liz-Marzán, Nano Today 2009, 4, 244.
- 20Y. Zheng, X. Zhong, Z. Li, Y. Xia, Part. Part. Syst. Charact. 2014, 31, 266.
- 21L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, L. M. Liz-Marzán, ACS Nano 2014, 8, 5833.
- 22Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.
- 23Z. Fan, H. Zhang, Acc. Chem. Res. 2016, 49, 2841.
- 24K. D. Gilroy, X. Yang, S. Xie, M. Zhao, D. Qin, Y. Xia, Adv. Mater. 2018, 30, 1706312.
- 25J. Qian, M. Shen, S. Zhou, C.-T. Lee, M. Zhao, Z. Lyu, Z. D. Hood, M. Vara, K. D. Gilroy, K. Wang, Y. Xia, Mater. Today 2018, 21, 834.
- 26Z. Wang, G. Yang, Z. Zhang, M. Jin, Y. Yin, ACS Nano 2016, 10, 4559.
- 27X. Zhang, H. Yin, J. Wang, L. Chang, Y. Gao, W. Liu, Z. Tang, Nanoscale 2013, 5, 8392.
- 28K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Nano Lett. 2007, 7, 3097.
- 29P. Christopher, S. Linic, J. Am. Chem. Soc. 2008, 130, 11264.
- 30I. Lee, R. Morales, M. A. Albiter, F. Zaera, Proc. Natl. Acad. Sci. USA 2008, 105, 15241.
- 31B. Piqueras-Fiszman, Z. Laughlin, M. Miodownik, C. Spence, Food Qual. Prefer. 2012, 24, 24.
- 32P. Milan, S. Mordechay, Fundamentals of electrochemical deposition, Wiley, Hoboken, 2006.
- 33S. S. Kruglikov, N. T. Kudriavtsev, G. F. Vorobiova, A. Y. A. Antonov, Electrochim. Acta 1965, 10, 253.
- 34M. Giulietti, M. M. Seckler, S. Derenzo, L. H. Schiavon, J. V. Valarelli, J. Nyvlt, Cryst. Res. Technol. 1999, 34, 959.
- 35G. Wulff, Z. Kristallogr. 1901, 34, 449.
- 36G. D. Barmparis, Z. Lodziana, N. Lopez, I. N. Remediakis, Beilstein J. Nanotechnol. 2015, 6, 361.
- 37T. Wang, C. Lee, L. D. Schmidt, Surf. Sci. 1985, 163, 181.
- 38D. A. Jefferson, P. J. F. Harris, Nature 1988, 332, 617.
- 39T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 1996, 272, 1924.
- 40Y. Sun, Y. Xia, Science 2002, 298, 2176.
- 41Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2002, 2, 165.
- 42Y. Sun, Y. Xia, Adv. Mater. 2002, 14, 833.
- 43Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 2002, 14, 4736.
- 44Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 2003, 3, 955.
- 45D. F. Evans, H. Wennerström, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, Wiley, Hoboken, 1999.
- 46S. Zhou, J. Li, K. D. Gilroy, J. Tao, C. Zhu, X. Yang, X. Sun, Y. Xia, ACS Nano 2016, 10, 9861.
- 47Z. Chen, T. Balankura, K. A. Fichthorn, R. M. Rioux, ACS Nano 2019, 13, 1849.
- 48B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett. 2007, 7, 1032.
- 49A. Ruditskiy, Y. Xia, J. Am. Chem. Soc. 2016, 138, 3161.
- 50R. R. da Silva, M. Yang, S. I. Choi, M. Chi, M. Luo, C. Zhang, Z. Y. Li, P. H. Camargo, S. J. Ribeiro, Y. Xia, ACS Nano 2016, 10, 7892.
- 51F. Wu, W. Wang, Z. Xu, F. Li, Sci. Rep. 2015, 5, 10772.
- 52S.-W. Hsu, A. R. Tao, Chem. Mater. 2018, 30, 4617.
- 53Y. Wang, Y. Zheng, C. Z. Huang, Y. Xia, J. Am. Chem. Soc. 2013, 135, 1941.
- 54Z. Chen, J. W. Chang, C. Balasanthiran, S. T. Milner, R. M. Rioux, J. Am. Chem. Soc. 2019, 141, 4328.
- 55Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, D. Y. Shen, J. Phys. Chem. B 2004, 108, 12877.
- 56R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001, 294, 1901.
- 57G. S. Métraux, C. A. Mirkin, Adv. Mater. 2005, 17, 412.
- 58Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, J. Am. Chem. Soc. 2011, 133, 18931.
- 59J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc. 2005, 127, 5312.
- 60W.-L. Huang, C.-H. Chen, M. H. Huang, J. Phys. Chem. C 2007, 111, 2533.
- 61T. H. Ha, H.-J. Koo, B. H. Chung, J. Phys. Chem. C 2007, 111, 1123.
- 62L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, Q. Zhang, Nano Lett. 2014, 14, 7201.
- 63J. Xie, J. Y. Lee, D. I. C. Wang, J. Phys. Chem. C 2007, 111, 10226.
- 64L. Au, B. Lim, P. Colletti, Y.-S. Jun, Y. Xia, Chem. Asian J. 2010, 5, 123.
- 65F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed. 2004, 43, 3673; Angew. Chem. 2004, 116, 3759.
- 66G. Wang, S. Tao, Y. Liu, L. Guo, G. Qin, K. Ijiro, M. Maeda, Y. Yin, Chem. Commun. 2016, 52, 398.
- 67Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, L. Zheng, Angew. Chem. Int. Ed. 2008, 47, 8901; Angew. Chem. 2008, 120, 9033.
- 68Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, Y. Xia, J. Am. Chem. Soc. 2007, 129, 3665.
- 69W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Cryst. Growth Des. 2008, 8, 4440.
- 70M. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu, Y. Xia, Nano Res. 2011, 4, 83.
- 71Y.-L. Zhang, X.-L. Sui, L. Zhao, D.-M. Gu, G.-S. Huang, Z.-B. Wang, Int. J. Hydrogen Energy 2019, 44, 6551.
- 72B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater. 2009, 19, 189.
- 73H. Huang, A. Ruditskiy, S. I. Choi, L. Zhang, J. Liu, Z. Ye, Y. Xia, ACS Appl. Mater. Interfaces 2017, 9, 31203.
- 74X. Xia, S.-I. Choi, J. A. Herron, N. Lu, J. Scaranto, H.-C. Peng, J. Wang, M. Mavrikakis, M. J. Kim, Y. Xia, J. Am. Chem. Soc. 2013, 135, 15706.
- 75N. Lu, W. Chen, G. Fang, B. Chen, K. Yang, Y. Yang, Z. Wang, S. Huang, Y. Li, Chem. Mater. 2014, 26, 2453.
- 76B. Lim, Y. Xiong, Y. Xia, Angew. Chem. Int. Ed. 2007, 46, 9279; Angew. Chem. 2007, 119, 9439.
- 77L. Figueroa-Cosme, Z. D. Hood, K. D. Gilroy, Y. Xia, J. Mater. Chem. C 2018, 6, 4677.
- 78Z. Niu, Q. Peng, M. Gong, H. Rong, Y. Li, Angew. Chem. Int. Ed. 2011, 50, 6315; Angew. Chem. 2011, 123, 6439.
- 79X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28.
- 80Y. Dai, X. Mu, Y. Tan, K. Lin, Z. Yang, N. Zheng, G. Fu, J. Am. Chem. Soc. 2012, 134, 7073.
- 81A. Demortière, P. Launois, N. Goubet, P. A. Albouy, C. Petit, J. Phys. Chem. B 2008, 112, 14583.
- 82C. Kim, M. Min, Y. W. Chang, K. H. Yoo, H. Lee, J. Nanosci. Nanotechnol. 2010, 10, 233.
- 83Y. Zhang, M. E. Grass, J. N. Kuhn, F. Tao, S. E. Habas, W. Huang, P. Yang, G. A. Somorjai, J. Am. Chem. Soc. 2008, 130, 5868.
- 84Y. Kang, X. Ye, C. B. Murray, Angew. Chem. Int. Ed. 2010, 49, 6156; Angew. Chem. 2010, 122, 6292.
- 85Z. Peng, C. Kisielowski, A. T. Bell, Chem. Commun. 2012, 48, 1854.
- 86S.-I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 2013, 13, 3420.
- 87I. A. Safo, M. Werheid, C. Dosche, M. Oezaslan, Nanoscale Adv. 2019, 1, 3095.
- 88L. Ruan, H. Ramezani-Dakhel, C. Y. Chiu, E. Zhu, Y. Li, H. Heinz, Y. Huang, Nano Lett. 2013, 13, 840.
- 89C. Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray, Y. Huang, Nat. Chem. 2011, 3, 393.
- 90H. Ramezani-Dakhel, L. Ruan, Y. Huang, H. Heinz, Adv. Funct. Mater. 2015, 25, 1374.
- 91J. M. Gisbert-González, J. M. Feliu, A. Ferre-Vilaplana, E. Herrero, J. Phys. Chem. C 2018, 122, 19004.
- 92M. Moglianetti, J. Solla-Gullón, P. Donati, D. Pedone, D. Debellis, T. Sibillano, R. Brescia, C. Giannini, V. Montiel, J. M. Feliu, P. P. Pompa, ACS Appl. Mater. Interfaces 2018, 10, 41608.
- 93X. Huang, Z. Zhao, J. Fan, Y. Tan, N. Zheng, J. Am. Chem. Soc. 2011, 133, 4718.
- 94S. Xie, H. Zhang, N. Lu, M. Jin, J. Wang, M. J. Kim, Z. Xie, Y. Xia, Nano Lett. 2013, 13, 6262.
- 95K. Jang, H. J. Kim, S. U. Son, Chem. Mater. 2010, 22, 1273.
- 96H. Duan, N. Yan, R. Yu, C.-R. Chang, G. Zhou, H.-S. Hu, H. Rong, Z. Niu, J. Mao, H. Asakura, T. Tanaka, P. J. Dyson, J. Li, Y. Li, Nat. Commun. 2014, 5, 3093.
- 97M. Zhou, H. Wang, M. Vara, Z. D. Hood, M. Luo, T. H. Yang, S. Bao, M. Chi, P. Xiao, Y. Zhang, Y. Xia, J. Am. Chem. Soc. 2016, 138, 12263.
- 98A. X. Yin, X. Q. Min, Y. W. Zhang, C. H. Yan, J. Am. Chem. Soc. 2011, 133, 3816.
- 99X. Huang, Y. Li, Y. Li, H. Zhou, X. Duan, Y. Huang, Nano Lett. 2012, 12, 4265.
- 100J. Wu, A. Gross, H. Yang, Nano Lett. 2011, 11, 798.
- 101C. Zhang, S. N. Oliaee, S. Y. Hwang, X. Kong, Z. Peng, Nano Lett. 2016, 16, 164.
- 102J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 2010, 10, 638.
- 103C. Zhang, S. Y. Hwang, A. Trout, Z. Peng, J. Am. Chem. Soc. 2014, 136, 7805.
- 104Y. Xia, X. Xia, H.-C. Peng, J. Am. Chem. Soc. 2015, 137, 7947.
- 105Y. Wang, J. He, C. Liu, W. H. Chong, H. Chen, Angew. Chem. Int. Ed. 2015, 54, 2022; Angew. Chem. 2015, 127, 2046.
- 106P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 2017, 139, 2122.
- 107M. I. Vesselinov, Crystal Growth For Beginners: Fundamentals Of Nucleation, Crystal Growth And Epitaxy, 3rd ed., World Scientific Publishing Company, Singapore, 2016.
- 108X. Xia, S. Xie, M. Liu, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia, Proc. Natl. Acad. Sci. USA 2013, 110, 6669.
- 109M. Chi, C. Wang, Y. Lei, G. Wang, D. Li, K. L. More, A. Lupini, L. F. Allard, N. M. Markovic, V. R. Stamenkovic, Nat. Commun. 2015, 6, 8925.
- 110Q. Fu, X. Bao, Chem. Soc. Rev. 2017, 46, 1842.
- 111K. B. Eisenthal, Chem. Rev. 2006, 106, 1462.
- 112T. H. Yang, K. D. Gilroy, Y. Xia, Chem. Sci. 2017, 8, 6730.
- 113Q. Zhang, W. Li, L. P. Wen, J. Chen, Y. Xia, Chem. Eur. J. 2010, 16, 10234.
- 114M. Luo, M. Zhou, R. Rosa da Silva, J. Tao, L. Figueroa-Cosme, K. D. Gilroy, H.-C. Peng, Z. He, Y. Xia, ChemNanoMat 2017, 3, 190.
- 115M. Luo, A. Ruditskiy, H.-C. Peng, J. Tao, L. Figueroa-Cosme, Z. He, Y. Xia, Adv. Funct. Mater. 2016, 26, 1209.
- 116S.-H. Liu, W. A. Saidi, Y. Zhou, K. A. Fichthorn, J. Phys. Chem. C 2015, 119, 11982.
- 117S. Ghosh, L. Manna, Chem. Rev. 2018, 118, 7804.
- 118Y. Wang, H. C. Peng, J. Liu, C. Z. Huang, Y. Xia, Nano Lett. 2015, 15, 1445.
- 119B. Jin, M. L. Sushko, Z. Liu, X. Cao, C. Jin, R. Tang, J. Phys. Chem. Lett. 2019, 10, 1443.
- 120J. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z.-Y. Li, Q. Zhang, Y. Zhu, Y. Xia, J. Am. Chem. Soc. 2010, 132, 8552.
- 121J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 244; Angew. Chem. 2011, 123, 258.
- 122L. Zhang, S.-I. Choi, J. Tao, H.-C. Peng, S. Xie, Y. Zhu, Z. Xie, Y. Xia, Adv. Funct. Mater. 2014, 24, 7520.
- 123H. Zhang, M. Jin, Y. Xia, Angew. Chem. Int. Ed. 2012, 51, 7656; Angew. Chem. 2012, 124, 7774.
- 124S. Xie, N. Lu, Z. Xie, J. Wang, M. J. Kim, Y. Xia, Angew. Chem. Int. Ed. 2012, 51, 10266; Angew. Chem. 2012, 124, 10412.
- 125H. Ye, Q. Wang, M. Catalano, N. Lu, J. Vermeylen, M. J. Kim, Y. Liu, Y. Sun, X. Xia, Nano Lett. 2016, 16, 2812.
- 126R. He, Y. C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, J. G. Hou, Nat. Commun. 2014, 5, 4327.
- 127S. Xie, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Z. Xie, Y. Xia, J. Am. Chem. Soc. 2013, 135, 16658.
- 128M. McEachran, D. Keogh, B. Pietrobon, N. Cathcart, I. Gourevich, N. Coombs, V. Kitaev, J. Am. Chem. Soc. 2011, 133, 8066.
- 129M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880.
- 130H. Heinz, H. Ramezani-Dakhel, Chem. Soc. Rev. 2016, 45, 412.
- 131W. A. Al-Saidi, H. Feng, K. A. Fichthorn, Nano Lett. 2012, 12, 997.
- 132S. H. Yoo, J. H. Lee, B. Delley, A. Soon, Phys. Chem. Chem. Phys. 2014, 16, 18570.
- 133D. S. Kilin, O. V. Prezhdo, Y. Xia, Chem. Phys. Lett. 2008, 458, 113.
- 134M. Shao, T. Yu, J. H. Odell, M. Jin, Y. Xia, Chem. Commun. 2011, 47, 6566.
- 135S. E. Mason, I. Grinberg, A. M. Rappe, Phys. Rev. B 2004, 69, 161401.
- 136G. T. K. K. Gunasooriya, M. Saeys, ACS Catal. 2018, 8, 10225.
- 137S. Yamagishi, T. Fujimoto, Y. Inada, H. Orita, J. Phys. Chem. B 2005, 109, 8899.
- 138S. Zhou, D. Huo, S. Goines, T.-H. Yang, Z. Lyu, M. Zhao, K. D. Gilroy, Y. Wu, Z. D. Hood, M. Xie, Y. Xia, J. Am. Chem. Soc. 2018, 140, 11898.
- 139S. K. Ghosh, S. Nath, S. Kundu, K. Esumi, T. Pal, J. Phys. Chem. B 2004, 108, 13963.
- 140S. K. Balavandy, K. Shameli, D. R. B. A. Biak, Z. Z. Abidin, Chem. Cent. J. 2014, 8, 11.
- 141H. C. Peng, S. Xie, J. Park, X. Xia, Y. Xia, J. Am. Chem. Soc. 2013, 135, 3780.
- 142G. Collins, M. Schmidt, G. P. McGlacken, C. O'Dwyer, J. D. Holmes, J. Phys. Chem. C 2014, 118, 6522.
- 143P. Jiang, S.-Y. Li, S.-S. Xie, Y. Gao, L. Song, Chem. Eur. J. 2004, 10, 4817.
- 144M. Wu, A. M. Vartanian, G. Chong, A. K. Pandiakumar, R. J. Hamers, R. Hernandez, C. J. Murphy, J. Am. Chem. Soc. 2019, 141, 4316.
- 145R. Z. Li, A. Hu, D. Bridges, T. Zhang, K. D. Oakes, R. Peng, U. Tumuluri, Z. Wu, Z. Feng, Nanoscale 2015, 7, 7368.
- 146B. Nikoobakht, M. A. El-Sayed, Langmuir 2001, 17, 6368.
- 147M. R. Langille, M. L. Personick, J. Zhang, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 14542.
- 148M. De, C.-C. You, S. Srivastava, V. M. Rotello, J. Am. Chem. Soc. 2007, 129, 10747.
- 149X. Xia, J. Zeng, L. K. Oetjen, Q. Li, Y. Xia, J. Am. Chem. Soc. 2012, 134, 1793.
- 150X. Huang, Z. Zhao, Y. Chen, E. Zhu, M. Li, X. Duan, Y. Huang, Energy Environ. Sci. 2014, 7, 2957.
- 151Z. Niu, Y. Li, Chem. Mater. 2014, 26, 72.
- 152L. M. Rossi, J. L. Fiorio, M. A. S. Garcia, C. P. Ferraz, Dalton Trans. 2018, 47, 5889.
- 153S. Campisi, M. Schiavoni, C. Chan-Thaw, A. Villa, Catalysts 2016, 6, 185.
- 154H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R. K. Mishra, D. Marchon, R. J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya, R. F. Ziolo, Surf. Sci. Rep. 2017, 72, 1.
- 155M. Crespo-Quesada, J. M. Andanson, A. Yarulin, B. Lim, Y. Xia, L. Kiwi-Minsker, Langmuir 2011, 27, 7909.
- 156C. Aliaga, J. Y. Park, Y. Yamada, H. S. Lee, C.-K. Tsung, P. Yang, G. A. Somorjai, J. Phys. Chem. C 2009, 113, 6150.
- 157Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, G. A. Somorjai, J. Phys. Chem. B 2006, 110, 23052.
- 158H. Cheng, Z. Cao, Z. Chen, M. Zhao, M. Xie, Z. Lyu, Z. Zhu, M. Chi, Y. Xia, Nano Lett. 2019, 19, 4997.
- 159S. Bao, M. Vara, X. Yang, S. Zhou, L. Figueroa-Cosme, J. Park, M. Luo, Z. Xie, Y. Xia, ChemCatChem 2017, 9, 414.
- 160S. Bao, X. Yang, M. Luo, S. Zhou, X. Wang, Z. Xie, Y. Xia, Chem. Commun. 2016, 52, 12594.
- 161R. A. Hughes, E. Menumerov, S. Neretina, Nanotechnology 2017, 28, 282002.
- 162K. D. Gilroy, J. Puibasset, M. Vara, Y. Xia, Angew. Chem. Int. Ed. 2017, 56, 8647; Angew. Chem. 2017, 129, 8773.
- 163K. D. Gilroy, A. Sundar, M. Hajfathalian, A. Yaghoubzade, T. Tan, D. Sil, E. Borguet, R. A. Hughes, S. Neretina, Nanoscale 2015, 7, 6827.
- 164A. S. Preston, R. A. Hughes, T. B. Demille, V. M. Rey Davila, S. Neretina, Acta Mater. 2019, 165, 15.
- 165L. Huang, M. Liu, H. Lin, Y. Xu, J. Wu, V. P. Dravid, C. Wolverton, C. A. Mirkin, Science 2019, 365, 1159.
- 166K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans. 2015, 44, 17883.
- 167S. Zhou, T.-H. Yang, M. Zhao, Y. Xia, Chin. J. Chem. Phys. 2018, 31, 370.
- 168T.-H. Yang, S. Zhou, K. D. Gilroy, L. Figueroa-Cosme, Y.-H. Lee, J.-M. Wu, Y. Xia, Proc. Natl. Acad. Sci. USA 2017, 114, 13619.
- 169T. H. Yang, H. C. Peng, S. Zhou, C. T. Lee, S. Bao, Y. H. Lee, J. M. Wu, Y. Xia, Nano Lett. 2017, 17, 334.
- 170M. Liu, K. D. Gilroy, H. C. Peng, M. Chi, L. Guo, Y. Xia, Chem. Commun. 2016, 52, 13159.
- 171S. Peng, J. S. Okasinski, J. D. Almer, Y. Ren, L. Wang, W. Yang, Y. Sun, J. Phys. Chem. C 2012, 116, 11842.
- 172Q. Liu, M. R. Gao, Y. Liu, J. S. Okasinski, Y. Ren, Y. Sun, Nano Lett. 2016, 16, 715.
- 173Y. Wu, D. Qin, J. Am. Chem. Soc. 2018, 140, 8340.
- 174H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 2009, 131, 7086.
- 175R.-Y. Zhong, K.-Q. Sun, Y.-C. Hong, B.-Q. Xu, ACS Catal. 2014, 4, 3982.