Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction
Dr. Xue Feng Lu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorProf. Bao Yu Xia
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Shuang-Quan Zang
College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, 450001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiong Wen (David) Lou
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Xue Feng Lu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorProf. Bao Yu Xia
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Shuang-Quan Zang
College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, 450001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiong Wen (David) Lou
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorGraphical Abstract
Despite the rapid developments in the past decade, many great challenges remain for the practical use of metal–organic frameworks (MOFs) based electrocatalysts. This Minireview summaries some major recent research efforts and advances on MOF-based electrocatalysts for the oxygen reduction reaction. Some promising directions and strategies are also discussed.
Abstract
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF-based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF-based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF-based ORR electrocatalysts are also discussed.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294–303.
- 2Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 3P. C. Stern, B. K. Sovacool, T. Dietz, Nat. Clim. Change 2016, 6, 547–555.
- 4P. P. Edwards, V. L. Kuznetsov, W. I. F. David, N. P. Brandon, Energy Policy 2008, 36, 4356–4362.
- 5F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172–2192.
- 6C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 2016, 45, 517–531.
- 7Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2016, 28, 2337–2344.
- 8A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302–2312.
- 9M. T. Koper, J. Electroanal. Chem. 2011, 660, 254–260.
- 10W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed. 2016, 55, 2650–2676; Angew. Chem. 2016, 128, 2698–2726.
- 11Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168–2201.
- 12H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 13H. B. Wu, X. W. Lou, Sci. Adv. 2017, 3, eaap 9252.
- 14J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213–1214.
- 15X. F. Lu, L. Yu, J. Zhang, X. W. Lou, Adv. Mater. 2019, 1900699.
- 16P.-Q. Liao, J.-Q. Shen, J.-P. Zhang, Coord. Chem. Rev. 2018, 373, 22–48.
- 17L. Sun, M. G. Campbell, M. Dinca, Angew. Chem. Int. Ed. 2016, 55, 3566–3579; Angew. Chem. 2016, 128, 3628–3642.
- 18S. Jin, ACS Energy Lett. 2019, 4, 1443–1445.
- 19J. Liu, D. Zhu, C. Guo, A. Vasileff, S.-Z. Qiao, Adv. Energy Mater. 2017, 7, 1700518.
- 20Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Coord. Chem. Rev. 2018, 362, 1–23.
- 21S. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 2018, 3, 17075.
- 22H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Chem 2017, 2, 52–80.
- 23C. Dey, T. Kundu, B. P. Biswal, A. Mallick, R. Banerjee, Acta Crystallogr. Sect. B 2014, 70, 3–10.
- 24A. Corma, H. Garcia, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606–4655.
- 25M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340–2391.
- 26L. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater. 2018, 30, 1703663.
- 27J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
- 28J. Mao, L. Yang, P. Yu, X. Wei, L. Mao, Electrochem. Commun. 2012, 19, 29–31.
- 29K. Iwase, T. Yoshioka, S. Nakanishi, K. Hashimoto, K. Kamiya, Angew. Chem. Int. Ed. 2015, 54, 11068–11072; Angew. Chem. 2015, 127, 11220–11224.
- 30W. Zhang, W. Lai, R. Cao, Chem. Rev. 2017, 117, 3717–3797.
- 31M. Lions, J.-B. Tommasino, R. Chattot, B. Abeykoon, N. Guillou, T. Devic, A. Demessence, L. Cardenas, F. Maillard, A. Fateeva, Chem. Commun. 2017, 53, 6496–6499.
- 32A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440–7444; Angew. Chem. 2012, 124, 7558–7562.
- 33P. M. Usov, B. Huffman, C. C. Epley, M. C. Kessinger, J. Zhu, W. A. Maza, A. J. Morris, ACS Appl. Mater. Interfaces 2017, 9, 33539–33543.
- 34V. Stavila, A. Talin, M. Allendorf, Chem. Soc. Rev. 2014, 43, 5994–6010.
- 35E. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath, M. Dinca, Nat. Commun. 2016, 7, 10942.
- 36E. M. Miner, S. Gul, N. D. Ricke, E. Pastor, J. Yano, V. K. Yachandra, T. Van Voorhis, M. Dincă, ACS Catal. 2017, 7, 7726–7731.
- 37X. H. Liu, W. L. Hu, W. J. Jiang, Y. W. Yang, S. Niu, B. Sun, J. Wu, J. S. Hu, ACS Appl. Mater. Interfaces 2017, 9, 28473–28477.
- 38B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204–6216.
- 39J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev. 2012, 112, 1001–1033.
- 40C. F. Leong, P. M. Usov, D. M. D′Alessandro, MRS Bull. 2016, 41, 858–864.
- 41S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 42R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 12058–12063; Angew. Chem. 2015, 127, 12226–12231.
- 43W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115–122.
- 44Y. Xu, Q. Li, H. Xue, H. Pang, Coord. Chem. Rev. 2018, 376, 292–318.
- 45G. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, 1800702.
- 46W. Zhao, G. Li, Z. Tang, Nano Today 2019, 27, 178–197.
- 47Q. Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774–4808.
- 48M. Jahan, Q. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707–6713.
- 49M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363–5372.
- 50H. Wang, F. Yin, B. Chen, G. Li, J. Mater. Chem. A 2015, 3, 16168–16176.
- 51Z. Xiang, Y. Xue, D. Cao, L. Huang, J. F. Chen, L. Dai, Angew. Chem. Int. Ed. 2014, 53, 2433–2437; Angew. Chem. 2014, 126, 2465–2469.
- 52K. Cho, S. H. Han, M. P. Suh, Angew. Chem. Int. Ed. 2016, 55, 15301–15305; Angew. Chem. 2016, 128, 15527–15531.
- 53H. Zhong, K. H. Ly, M. Wang, Y. Krupskaya, X. Han, J. Zhang, J. Zhang, V. Kataev, B. Buchner, I. M. Weidinger, S. Kaskel, P. Liu, M. Chen, R. Dong, X. Feng, Angew. Chem. Int. Ed. 2019, 58, 10677–10682; Angew. Chem. 2019, 131, 10787–10792.
- 54H. R. Moon, D. W. Lim, M. P. Suh, Chem. Soc. Rev. 2013, 42, 1807–1824.
- 55X. He, F. Yin, G. Li, Int. J. Hydrogen Energy 2015, 40, 9713–9722.
- 56K. Kamiya, R. Kamai, K. Hashimoto, S. Nakanishi, Nat. Commun. 2014, 5, 5040.
- 57S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Adv. Energy Mater. 2017, 7, 1700363.
- 58X. F. Lu, L. Yu, X. W. Lou, Sci. Adv. 2019, 5, eaav 6009.
- 59K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887–5903.
- 60Q. Ren, H. Wang, X. F. Lu, Y. X. Tong, G. R. Li, Adv. Sci. 2018, 5, 1700515.
- 61B. Y. Guan, Y. Lu, Y. Wang, M. Wu, X. W. Lou, Adv. Funct. Mater. 2018, 28, 1706738.
- 62X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater. 2017, 29, 1604437.
- 63H. Hu, B. Guan, B. Xia, X. W. Lou, J. Am. Chem. Soc. 2015, 137, 5590–5595.
- 64T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925–13931.
- 65L. Han, X. Y. Yu, X. W. Lou, Adv. Mater. 2016, 28, 4601–4605.
- 66P. He, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 3897–3900; Angew. Chem. 2017, 129, 3955–3958.
- 67J. Nai, Y. Lu, L. Yu, X. Wang, X. W. Lou, Adv. Mater. 2017, 29, 1703870.
- 68L. Yao, W. Yang, H. Liu, J. Jia, G. Wu, D. Liu, T. Liu, T. Tan, C. Wang, Dalton Trans. 2017, 46, 15512–15519.
- 69J. Zhang, Y. Luan, Z. Lyu, L. Wang, L. Xu, K. Yuan, F. Pan, M. Lai, Z. Liu, W. Chen, Nanoscale 2015, 7, 14881–14888.
- 70J. Nai, X. W. Lou, Adv. Mater. 2018, 30, 1706825.
- 71J. Nai, B. Y. Guan, L. Yu, X. W. Lou, Sci. Adv. 2017, 3, e1700732.
- 72J. Nai, J. Zhang, X. W. Lou, Chem 2018, 4, 1967–1982.
- 73Y. Fang, X. Y. Yu, X. W. Lou, Adv. Mater. 2018, 30, 1706668.
- 74L. Zhang, Z. Xia, J. Phys. Chem. C 2011, 115, 11170–11176.
- 75X. Kong, Q. Liu, D. Chen, G. Chen, ChemCatChem 2017, 9, 846–852.
- 76Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 2015, 5, 6707–6712.
- 77X. Wang, X. Li, C. Ouyang, Z. Li, S. Dou, Z. Ma, L. Tao, J. Huo, S. Wang, J. Mater. Chem. A 2016, 4, 9370–9374.
- 78J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, Z. Dai, J. Mater. Chem. A 2014, 2, 6316–6319.
- 79K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760–764.
- 80P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442–450.
- 81W. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 14385–14388.
- 82L. Chai, L. Zhang, X. Wang, L. Xu, C. Han, T.-T. Li, Y. Hu, J. Qian, S. Huang, Carbon 2019, 146, 248–256.
- 83B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 84Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng, Z. Kang, Z. Liu, J. Y. Lee, D. Zhao, Carbon 2017, 111, 641–650.
- 85W.-J. Liu, Y.-Q. Wen, J.-W. Wang, D.-C. Zhong, J.-B. Tan, T.-B. Lu, J. Mater. Chem. A 2019, 7, 9587–9592.
- 86P. Huang, H. Li, X. Huang, D. Chen, ACS Appl. Mater. Interfaces 2017, 9, 21083–21088.
- 87H. B. Zhang, P. F. An, W. Zhou, B. Y. Guan, P. Zhang, J. C. Dong, X. W. Lou, Sci. Adv. 2018, 4, eaao 6657.
- 88H. Zhang, W. Zhou, T. Chen, B. Y. Guan, Z. Li, X. W. Lou, Energy Environ. Sci. 2018, 11, 1980–1984.
- 89J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102–10120; Angew. Chem. 2015, 127, 10240–10259.
- 90M. Chen, Y. He, J. S. Spendelow, G. Wu, ACS Energy Lett. 2019, 4, 1619–1633.
- 91Z. Xia, L. An, P. Chen, D. Xia, Adv. Energy Mater. 2016, 6, 1600458.
- 92S. Ma, G. A. Goenaga, A. V. Call, D. J. Liu, Chem. Eur. J. 2011, 17, 2063–2067.
- 93P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, Angew. Chem. Int. Ed. 2016, 55, 10800–10805; Angew. Chem. 2016, 128, 10958–10963.
- 94L. Jiao, G. Wan, R. Zhang, H. Zhou, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 8525–8529; Angew. Chem. 2018, 130, 8661–8665.
- 95M. Xiao, J. Zhu, G. Li, N. Li, S. Li, Z. P. Cano, L. Ma, P. Cui, P. Xu, G. Jiang, H. Jin, S. Wang, T. Wu, J. Lu, A. Yu, D. Su, Z. Chen, Angew. Chem. Int. Ed. 2019, 58, 9640–9645; Angew. Chem. 2019, 131, 9742–9747.
- 96Y. Yang, K. Mao, S. Gao, H. Huang, G. Xia, Z. Lin, P. Jiang, C. Wang, H. Wang, Q. Chen, Adv. Mater. 2018, 30, 1801732.
- 97S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.-C. Cheong, Y. Wang, L. Zheng, Nat. Nanotechnol. 2018, 13, 856.
- 98Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, Nat. Catal. 2018, 1, 781–786.
- 99A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin, X. Wang, C. Yang, B. Dong, Y. Jia, J. Liu, X. Sun, Small Methods 2019, 3, 1800471.
- 100Y. Z. Chen, C. Wang, Z. Y. Wu, Y. Xiong, Q. Xu, S. H. Yu, H. L. Jiang, Adv. Mater. 2015, 27, 5010–5016.
- 101B. Y. Guan, L. Yu, X. W. Lou, Adv. Sci. 2017, 4, 1700247.
- 102G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878–1889.
- 103S. L. Zhang, B. Y. Guan, X. W. Lou, Small 2019, 15, 1805324.
- 104Y. Xiong, Y. Yang, F. J. DiSalvo, H. D. Abruna, J. Am. Chem. Soc. 2019, 141, 10744–10750.
- 105H. Fang, J. Yang, M. Wen, Q. Wu, Adv. Mater. 2018, 30, 1705698.
- 106L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. J. Liu, Science 2018, 362, 1276–1281.
- 107E. Hu, X.-Y. Yu, F. Chen, Y. Wu, Y. Hu, X. W. Lou, Adv. Energy Mater. 2018, 8, 1702476.
- 108J.-S. Li, S.-L. Li, Y.-J. Tang, M. Han, Z.-H. Dai, J.-C. Bao, Y.-Q. Lan, Chem. Commun. 2015, 51, 2710–2713.
- 109Z. Li, H. Sun, L. Wei, W.-J. Jiang, M. Wu, J.-S. Hu, ACS Appl. Mater. Interfaces 2017, 9, 5272–5278.
- 110B. Y. Guan, L. Yu, X. W. Lou, Energy Environ. Sci. 2016, 9, 3092–3096.
- 111W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568–576.
- 112A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 2016, 55, 4087–4091; Angew. Chem. 2016, 128, 4155–4160.
- 113D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu, Y. Li, ACS Catal. 2018, 8, 7879–7888.
- 114Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612–13614.
- 115W. Xiao, D. Wang, X. W. Lou, J. Phys. Chem. C 2010, 114, 1694–1700.
- 116K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo, S. F. Bent, Adv. Energy Mater. 2012, 2, 1269–1277.
- 117X. F. Lu, Y. Chen, S. Wang, S. Gao, X. W. Lou, Adv. Mater. 2019, 31, 1902339.
- 118Y. Fang, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 7744–7748; Angew. Chem. 2019, 131, 7826–7830.
- 119P. Zhang, B. Y. Guan, L. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 7141–7145; Angew. Chem. 2017, 129, 7247–7251.
- 120B. Chen, R. Li, G. Ma, X. Gou, Y. Zhu, Y. Xia, Nanoscale 2015, 7, 20674–20684.
- 121H. Hu, L. Han, M. Z. Yu, Z. Wang, X. W. Lou, Energy Environ. Sci. 2016, 9, 107–111.
- 122T. Sun, S. Zhang, L. Xu, D. Wang, Y. Li, Chem. Commun. 2018, 54, 12101–12104.
- 123J. Sheng, L. Wang, L. Deng, M. Zhang, H. He, K. Zeng, F. Tang, Y. N. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7191–7200.
- 124C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S. J. Pennycook, J. Wang, Energy Storage Mater. 2019, 16, 243–250.
- 125F. Zhang, S. Xi, G. Lin, X. Hu, X. W. Lou, K. Xie, Adv. Mater. 2019, 31, 1806552.
- 126R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, Adv. Mater. 2018, 30, 1703711.
- 127Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad 4998.
- 128M. Boudart, Chem. Rev. 1995, 95, 661–666.
- 129Z. Lu, W. Xu, J. Ma, Y. Li, X. Sun, L. Jiang, Adv. Mater. 2016, 28, 7155–7161.
- 130M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp, O. K. Farha, ACS Energy Lett. 2018, 3, 598–611.
- 131Q. Wang, D. Astruc, Chem. Rev. 2019, https://doi.org/10.1021/acs.chemrev.9b00223.
- 132C. Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 2018, 30, 1703646.
- 133Y. Yan, T. He, B. Zhao, K. Qi, H. Liu, B. Y. Xia, J. Mater. Chem. A 2018, 6, 15905–15926.
- 134P. Peng, Z. Zhou, J. Guo, Z. Xiang, ACS Energy Lett. 2017, 2, 1308–1314.
- 135S. M. Cohen, Chem. Rev. 2012, 112, 970–1000.
- 136B. M. Weckhuysen, Chem. Soc. Rev. 2010, 39, 4557–4559.
- 137J. Singh, C. Lamberti, J. A. van Bokhoven, Chem. Soc. Rev. 2010, 39, 4754–4766.
- 138K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed. 2019, 58, 1252–1265; Angew. Chem. 2019, 131, 1264–1277.
- 139Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, Nat. Energy 2016, 1, 16130.
- 140Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Coord. Chem. Rev. 2018, 362, 1–23.
- 141Y. P. Zhu, C. Guo, Y. Zheng, S. Z. Qiao, Acc. Chem. Res. 2017, 50, 915–923.
- 142C. H. Choi, C. Baldizzone, J. P. Grote, A. K. Schuppert, F. Jaouen, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2015, 54, 12753–12757; Angew. Chem. 2015, 127, 12944–12948.
- 143Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, J. Am. Chem. Soc. 2019, 141, 12372–12381.
- 144X. Guo, L. Li, X. Zhang, J. Chen, ChemElectroChem 2015, 2, 404–411.
- 145J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, B. Y. Xia, Adv. Sci. 2018, 5, 1700691.
- 146L. Yang, J. Shui, L. Du, Y. Shao, J. Liu, L. Dai, Z. Hu, Adv. Mater. 2019, 31, 1804799.
Citing Literature
March 16, 2020
Pages 4634-4650