Strain-Induced Isomerization in One-Dimensional Metal–Organic Chains
Dr. Mykola Telychko
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
These authors contributed equally to this work.
Search for more papers by this authorJie Su
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
These authors contributed equally to this work.
Search for more papers by this authorAurelio Gallardo
Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
These authors contributed equally to this work.
Search for more papers by this authorYanwei Gu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorJesús I. Mendieta-Moreno
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Search for more papers by this authorDongchen Qi
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4001 Australia
Search for more papers by this authorDr. Anton Tadich
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorShaotang Song
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorPin Lyu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorZhizhan Qiu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
Search for more papers by this authorHanyan Fang
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorProf. Ming Joo Koh
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Prof. Jishan Wu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Pavel Jelínek
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Prof. Jiong Lu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorDr. Mykola Telychko
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
These authors contributed equally to this work.
Search for more papers by this authorJie Su
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
These authors contributed equally to this work.
Search for more papers by this authorAurelio Gallardo
Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
These authors contributed equally to this work.
Search for more papers by this authorYanwei Gu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorJesús I. Mendieta-Moreno
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Search for more papers by this authorDongchen Qi
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4001 Australia
Search for more papers by this authorDr. Anton Tadich
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorShaotang Song
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorPin Lyu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorZhizhan Qiu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
Search for more papers by this authorHanyan Fang
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorProf. Ming Joo Koh
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Prof. Jishan Wu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Pavel Jelínek
Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Prof. Jiong Lu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorGraphical Abstract
Skeletal rearrangement of 1D metal–organic chains (MOCs) occurs via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. Cu-catalyzed debromination of organic monomers generates 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms to form MOCs. Bond-resolved atomic force microscopy and DFT reveal that a relief of internal strain drives skeletal rearrangement.
Abstract
The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution- and solid-phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom-up on-surface synthesis of well-defined nanostructures. We report an internal strain-induced skeletal rearrangement of one-dimensional (1D) metal–organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu-catalyzed debromination of organic monomers to generate 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond-resolved non-contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate-induced internal strain drives the skeletal rearrangement of MOCs via 1,3-H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain-induced structural rearrangement in 1D systems will enrich the toolbox for on-surface synthesis of novel functional materials and quantum nanostructures.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201909074-sup-0001-misc_information.pdf4 MB | Supplementary |
anie201909074-sup-0001-movie_reac.mpg4.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366.
- 2S. Stepanow, N. Lin, J. V. Barth, J. Phys. Condens. Matter 2008, 20, 184002.
- 3M. Di Giovannantonio, M. El Garah, J. Lipton-Duffin, V. Meunier, L. Cardenas, Y. Fagot Revurat, A. Cossaro, A. Verdini, D. F. Perepichka, F. Rosei, G. Contini, ACS Nano 2013, 7, 8190.
- 4L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechnol. 2007, 2, 687.
- 5J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470.
- 6L. Talirz, P. Ruffieux, R. Fasel, Adv. Mater. 2016, 28, 6222.
- 7S. Clair, D. G. de Oteyza, Chem. Rev. 2019, 119, 4717.
- 8J. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080.
- 9M. Treier, C. A. Pignedoli, T. Laino, R. Rieger, K. Müllen, D. Passerone, R. Fasel, Nat. Chem. 2011, 3, 61.
- 10A. Shiotari, T. Nakae, K. Iwata, S. Mori, T. Okujima, H. Uno, H. Sakaguchi, Y. Sugimoto, Nat. Commun. 2017, 8, 16089.
- 11Q. Zhong, D. Ebeling, J. Tschakert, Y. Gao, D. Bao, S. Du, C. Li, L. Chi, A. Schirmeisen, Nat. Commun. 2018, 9, 3277.
- 12J. Liu, B. Xia, H. Xu, N. Lin, J. Phys. Chem. C 2018, 122, 13001.
- 13L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 2009, 325, 1110.
- 14D. G. de Oteyza, P. Gorman, Y.-C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, F. R. Fischer, Science 2013, 340, 1434.
- 15S. Kawai, A. Sadeghi, T. Okamoto, C. Mitsui, R. Pawlak, T. Meier, J. Takeya, S. Goedecker, E. Meyer, Small 2016, 12, 5303.
- 16N. Kocić, X. Liu, S. Chen, S. Decurtins, O. Krejčí, P. Jelínek, J. Repp, S.-X. Liu, J. Am. Chem. Soc. 2016, 138, 5585.
- 17F. Queck, O. Krejčí, P. Scheuerer, F. Bolland, M. Otyepka, P. Jelínek, J. Repp, J. Am. Chem. Soc. 2018, 140, 12884.
- 18W. Wang, X. Shi, S. Wang, M. A. Van Hove, N. Lin, J. Am. Chem. Soc. 2011, 133, 13264.
- 19Q. Sun, L. Cai, S. Wang, R. Widmer, H. Ju, J. Zhu, L. Li, Y. He, P. Ruffieux, R. Fasel, W. Xu, J. Am. Chem. Soc. 2016, 138, 1106.
- 20J. Liu, Q. Chen, K. Cai, J. Li, Y. Li, X. Yang, Y. Zhang, Y. Wang, H. Tang, D. Zhao, K. Wu, Nat. Commun. 2019, 10, 2545.
- 21P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, P. Jelínek, Phys. Rev. B 2014, 90, 085421.
- 22P. Hapala, M. Švec, O. Stetsovych, N. J. van der Heijden, M. Ondráček, J. van der Lit, P. Mutombo, I. Swart, P. Jelínek, Nat. Commun. 2016, 7, 11560.
- 23O. Krejčí, P. Hapala, M. Ondráček, P. Jelínek, Phys. Rev. B 2017, 95, 045407.
- 24J. I. Mendieta-Moreno, R. C. Walker, J. P. Lewis, P. Gómez-Puertas, J. Mendieta, J. Ortega, J. Chem. Theory Comput. 2014, 10, 2185.
- 25G. H. Vineyard, J. Phys. Chem. Solids 1957, 3, 121.
- 26Q. Li, B. Yang, J. Björk, Q. Zhong, H. Ju, J. Zhang, N. Cao, Z. Shi, H. Zhang, D. Ebeling, A. Schirmeisen, J. Zhu, L. Chi, J. Am. Chem. Soc. 2018, 140, 6076.
- 27L. Ferrighi, I. Píš, T. H. Nguyen, M. Cattelan, S. Nappini, A. Basagni, M. Parravicini, A. Papagni, F. Sedona, E. Magnano, F. Bondino, C. Di Valentin, S. Agnoli, Chem. Eur. J. 2015, 21, 5826.
- 28Q. Fan, S. Werner, J. Tschakert, D. Ebeling, A. Schirmeisen, G. Hilt, W. Hieringer, J. M. Gottfried, J. Am. Chem. Soc. 2018, 140, 7526.
- 29M. Fritton, K. Otte, J. Björk, P. K. Biswas, W. M. Heckl, M. Schmittel, M. Lackinger, Chem. Commun. 2018, 54, 9745.
- 30F. J. Giessibl, Appl. Phys. Lett. 1998, 73, 3956.
- 31V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 2009, 180, 2175.
- 32J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 33A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.
- 34D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, et al., AMBER 2018, University of California, San Francisco 2018.
- 35J. P. Lewis, P. Jelínek, J. Ortega, A. A. Demkov, D. G. Trabada, B. Haycock, H. Wang, G. Adams, J. K. Tomfohr, E. Abad, H. Wang, D. A. Drabold, Phys. Status Solidi B 2011, 248, 1989.
- 36H. Heinz, T. J. Lin, R. Kishore Mishra, F. S. Emami, Langmuir 2013, 29, 1754.
- 37A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- 38C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 39S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 40M. Basanta, Y. Dappe, P. Jelínek, J. Ortega, Comput. Mater. Sci. 2007, 39, 759.
- 41S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. Comput. Chem. 1992, 13, 1011.