Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage
Dr. Yun-Xiao Wang
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei-Hong Lai
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
These authors contributed equally to this work.
Search for more papers by this authorYun-Xia Wang
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorCorresponding Author
A/Prof. Shu-Lei Chou
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorProf. Xinping Ai
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorProf. Hanxi Yang
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Yuliang Cao
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorDr. Yun-Xiao Wang
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei-Hong Lai
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
These authors contributed equally to this work.
Search for more papers by this authorYun-Xia Wang
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorCorresponding Author
A/Prof. Shu-Lei Chou
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorProf. Xinping Ai
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorProf. Hanxi Yang
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Yuliang Cao
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorGraphical Abstract
Sulfur-based electrode materials are currently regarded as promising candidates for sodium-storage technologies, especially for sodium-ion (Na-ion) and room-temperature sodium–sulfur (RT-NaS) batteries. In this Minireview on the progress of electrodes based on metal sulfides and elemental sulfur, material design and performance enhancement are highlighted and sodium-storage mechanisms for both battery systems are discussed.
Abstract
Emerging rechargeable sodium-ion storage systems—sodium-ion and room-temperature sodium–sulfur (RT-NaS) batteries—are gaining extensive research interest as low-cost options for large-scale energy-storage applications. Owing to their abundance, easy accessibility, and unique physical and chemical properties, sulfur-based materials, in particular metal sulfides (MSx) and elemental sulfur (S), are currently regarded as promising electrode candidates for Na-storage technologies with high capacity and excellent redox reversibility based on multielectron conversion reactions. Here, we present current understanding of Na-storage mechanisms of the S-based electrode materials. Recent progress and strategies for improving electronic conductivity and tolerating volume variations of the MSx anodes in Na-ion batteries are reviewed. In addition, current advances on S cathodes in RT-NaS batteries are presented. We outline a novel emerging concept of integrating MSx electrocatalysts into conventional carbonaceous matrices as effective polarized S hosts in RT-NaS batteries as well. This comprehensive progress report could provide guidance for research toward the development of S-based materials for the future Na-storage techniques.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201902552-sup-0001-misc_information.pdf10.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19;
- 1bB. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935;
- 1cY. Lu, J. B. Goodenough, J. Mater. Chem. 2011, 21, 10113–10117;
- 1dZ. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 2
- 2aS. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710–721;
- 2bD. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431–3448; Angew. Chem. 2015, 127, 3495–3513;
- 2cP. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120; Angew. Chem. 2018, 130, 106–126.
- 3H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci. 2013, 6, 2338–2360.
- 4M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947–958.
- 5T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, G. Yang, J. Am. Chem. Soc. 2018, 140, 5962–5968.
- 6S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 2011, 21, 3859–3867.
- 7Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Carbon 2013, 57, 202–208.
- 8N. Wang, Y. Gao, Y. X. Wang, K. Liu, W. Lai, Y. Hu, Y. Zhao, S. L. Chou, L. Jiang, Adv. Sci. 2016, 3, 1600013.
- 9
- 9aH. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, L. Hu, Nano Lett. 2013, 13, 3093–3100;
- 9bM. He, K. Kravchyk, M. Walter, M. V. Kovalenko, Nano Lett. 2014, 14, 1255–1262;
- 9cY. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Adv. Funct. Mater. 2015, 25, 214–220;
- 9dS. Liu, J. Feng, X. Bian, J. Liu, H. Xu, Energy Environ. Sci. 2016, 9, 1229–1236.
- 10M. T. Sougrati, A. Darwiche, X. Liu, A. Mahmoud, R. P. Hermann, S. Jouen, L. Monconduit, R. Dronskowski, L. Stievano, Angew. Chem. Int. Ed. 2016, 55, 5090–5095; Angew. Chem. 2016, 128, 5174–5179.
- 11
- 11aY. Denis, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, Nat. Commun. 2013, 4, 2922;
- 11bB. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, J. Y. Lee, Adv. Mater. 2014, 26, 3854–3859;
- 11cC. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier, Y. Yu, Adv. Sci. 2015, 2, 1500200;
- 11dY.-X. Wang, J. Yang, S.-L. Chou, H. K. Liu, W.-x. Zhang, D. Zhao, S. X. Dou, Nat. Commun. 2015, 6, 8689;
- 11eL. Xu, Y. Hu, H. Zhang, H. Jiang, C. Li, ACS Sustainable Chem. Eng. 2016, 4, 4251–4255;
- 11fZ. Shadike, M.-H. Cao, F. Ding, L. Sang, Z.-W. Fu, Chem. Commun. 2015, 51, 10486–10489;
- 11gS. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Small 2016, 12, 1359–1368;
- 11hX. Xu, S. Ji, M. Gu, J. Liu, ACS Appl. Mater. Interfaces 2015, 7, 20957–20964;
- 11iZ. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 12794–12798; Angew. Chem. 2014, 126, 13008–13012;
- 11jP. He, Y. Fang, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 12202–12205; Angew. Chem. 2017, 129, 12370–12373.
- 12
- 12aJ. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 2015, 10, 980–985;
- 12bL. Feng, H. Xue, ChemElectroChem 2017, 4, 20–34;
- 12cW.-J. Li, S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Chem. Commun. 2015, 51, 3682–3685;
- 12dJ. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Energy Environ. Sci. 2015, 8, 3531–3538;
- 12eJ. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu, L. Monconduit, J. Mater. Chem. A 2014, 2, 2050–2059;
- 12fM. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu, C. Yan, Adv. Funct. Mater. 2016, 26, 5019–5027;
- 12gS.-O. Kim, A. Manthiram, Chem. Commun. 2016, 52, 4337–4340;
- 12hX. Fan, J. Mao, Y. Zhu, C. Luo, L. Suo, T. Gao, F. Han, S. C. Liou, C. Wang, Adv. Energy Mater. 2015, 5, 1500174;
- 12iH. Yadegari, M. N. Banis, A. Lushington, Q. Sun, R. Li, T.-K. Sham, X. Sun, Energy Environ. Sci. 2017, 10, 286–295;
- 12jF. Yang, H. Gao, J. Chen, Z. Guo, Small Methods 2017, 1, 1700216;
- 12kJ. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. Int. Ed. 2013, 52, 4633–4636; Angew. Chem. 2013, 125, 4731–4734.
- 13
- 13aB. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y. B. He, Z. Lin, Angew. Chem. Int. Ed. 2017, 56, 1869–1872; Angew. Chem. 2017, 129, 1895–1898;
- 13bS. Yuan, X. l. Huang, D. l. Ma, H. g. Wang, F. z. Meng, X. b. Zhang, Adv. Mater. 2014, 26, 2273–2279;
- 13cZ.-J. Zhang, Y.-X. Wang, S.-L. Chou, H.-J. Li, H.-K. Liu, J.-Z. Wang, J. Power Sources 2015, 280, 107–113;
- 13dD. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 8901–8905; Angew. Chem. 2018, 130, 9039–9043.
- 14Y. Kim, K. H. Ha, S. M. Oh, K. T. Lee, Chem. Eur. J. 2014, 20, 11980–11992.
- 15
- 15aX. Chen, X. Shen, B. Li, H. J. Peng, X. B. Cheng, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 734–737; Angew. Chem. 2018, 130, 742–745;
- 15bA. Wang, X. Hu, H. Tang, C. Zhang, S. Liu, Y. W. Yang, Q. H. Yang, J. Luo, Angew. Chem. Int. Ed. 2017, 56, 11921–11926; Angew. Chem. 2017, 129, 12083–12088;
- 15cH. Wang, C. Wang, E. Matios, W. Li, Angew. Chem. Int. Ed. 2018, 57, 7734–7737; Angew. Chem. 2018, 130, 7860–7863.
- 16
- 16aS. K. Das, S. Lau, L. A. Archer, J. Mater. Chem. A 2014, 2, 12623–12629;
- 16bJ. Kim, J. Yu, H. Ryu, K. Kim, T. Nam, J. Ahn, G. Wang, H. Ahn, Rev. Adv. Mater. Sci 2011, 28, 107–110;
- 16cT. Kim, J. Choi, H. Ryu, G. Cho, K. Kim, J. Ahn, K. Cho, H. Ahn, J. Power Sources 2007, 174, 1275–1278;
- 16dZ. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Energy Environ. Sci. 2015, 8, 1309–1316;
- 16eJ.-S. Kim, H.-J. Ahn, H.-S. Ryu, D.-J. Kim, G.-B. Cho, K.-W. Kim, T.-H. Nam, J. H. Ahn, J. Power Sources 2008, 178, 852–856.
- 17
- 17aB. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419–2430;
- 17bM. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci. 2012, 5, 7854–7863;
- 17cA. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46, 1125–1134;
- 17dY. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441.
- 18
- 18aA. Manthiram, X. Yu, Small 2015, 11, 2108–2114;
- 18bX. Yu, A. Manthiram, ChemElectroChem 2014, 1, 1275–1280.
- 19Y. X. Wang, B. Zhang, W. Lai, Y. Xu, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2017, 7, 1602829.
- 20X. Rui, H. Tan, Q. Yan, Nanoscale 2014, 6, 9889–9924.
- 21
- 21aZ. Hu, Q. Liu, S. L. Chou, S. X. Dou, Adv. Mater. 2017, 29, 1700606;
- 21bF. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem. Chem. Phys. 2013, 15, 15876–15887;
- 21cY. Xiao, S. H. Lee, Y. K. Sun, Adv. Energy Mater. 2017, 7, 1601329;
- 21dW. Kang, Y. Wang, J. Xu, J. Mater. Chem. A 2017, 5, 7667–7690.
- 22
- 22aQ. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, ACS Nano 2017, 11, 12658–12667;
- 22bL. Wang, L. Huang, F. Liang, S. Liu, Y. Wang, H. Zhang, Chin. J. Catal. 2017, 38, 1528–1539;
- 22cY. Zhao, Q. Pang, Y. Meng, Y. Gao, C. Wang, B. Liu, Y. Wei, F. Du, G. Chen, Chem. Eur. J. 2017, 23, 13150–13157.
- 23J. Ge, Y. Li, Chem. Commun. 2003, 2498–2499.
- 24Y.-X. Wang, J. Yang, S.-L. Chou, H. K. Liu, W.-x. Zhang, D. Zhao, S. X. Dou, Nat. Commun. 2015, 6, 8689.
- 25
- 25aQ. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao, S. Zhang, Inorg. Chem. 2014, 53, 3511–3518;
- 25bX. Song, X. Li, Z. Bai, B. Yan, D. Li, X. Sun, Nano Energy 2016, 26, 533–540.
- 26W. Qin, D. Li, X. Zhang, D. Yan, B. Hu, L. Pan, Electrochim. Acta 2016, 191, 435–443.
- 27J.-S. Kim, D.-Y. Kim, G.-B. Cho, T.-H. Nam, K.-W. Kim, H.-S. Ryu, J.-H. Ahn, H.-J. Ahn, J. Power Sources 2009, 189, 864–868.
- 28H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo, H. Wang, Y. Guo, S. Madhavi, Q. Yan, ACS Appl. Mater. Interfaces 2016, 8, 25261–25267.
- 29
- 29aJ.-S. Kim, G.-B. Cho, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn, Curr. Appl. Phys. 2011, 11, S 215–S218;
- 29bH.-S. Ryu, J.-S. Kim, J. Park, J.-Y. Park, G.-B. Cho, X. Liu, I.-S. Ahn, K.-W. Kim, J.-H. Ahn, J.-P. Ahn, S. W. Martin, G. Wang, H.-J. Ahn, J. Power Sources 2013, 244, 764–770;
- 29cG. D. Park, J. S. Cho, Y. C. Kang, Nanoscale 2015, 7, 16781–16788;
- 29dD.-Y. Go, J. Park, P.-J. Noh, G.-B. Cho, H.-S. Ryu, T.-H. Nam, H.-J. Ahn, K.-W. Kim, Mater. Res. Bull. 2014, 58, 190–194;
- 29eW. Qin, T. Chen, T. Lu, D. H. C. Chua, L. Pan, J. Power Sources 2016, 302, 202–209.
- 30
- 30aL. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, Adv. Energy Mater. 2015, 5, 1400977;
- 30bA. Manthiram, Y. Jeong, J. Solid State Chem. 1999, 147, 679–681;
- 30cX. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, Y. Qian, Chem. Lett. 2004, 33, 1294–1295;
- 30dZ. Li, J. Han, L. Fan, R. Guo, CrystEngComm 2015, 17, 1952–1958;
- 30eY. Zhang, W. Sun, X. Rui, B. Li, H. T. Tan, G. Guo, S. Madhavi, Y. Zong, Q. Yan, Small 2015, 11, 3694–3702.
- 31M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, ACS Appl. Mater. Interfaces 2017, 9, 21283–21291.
- 32M. Krengel, P. Adelhelm, F. Klein, W. Bensch, Chem. Commun. 2015, 51, 13500–13503.
- 33S. H. Choi, Y. C. Kang, Nanoscale 2015, 7, 6230–6237.
- 34
- 34aX. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, ACS Nano 2014, 8, 11394–11400;
- 34bJ. Park, J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn, Electrochim. Acta 2013, 92, 427–432.
- 35Q. Li, Z. Yao, J. Wu, S. Mitra, S. Hao, T. S. Sahu, Y. Li, C. Wolverton, V. P. Dravid, Nano Energy 2017, 38, 342–349.
- 36Y.-X. Wang, K. H. Seng, S.-L. Chou, J.-Z. Wang, Z. Guo, D. Wexler, H.-K. Liu, S.-X. Dou, Chem. Commun. 2014, 50, 10730–10733.
- 37Y. X. Wang, S. L. Chou, D. Wexler, H. K. Liu, S. X. Dou, Chem. Eur. J. 2014, 20, 9607–9612.
- 38T. S. Sahu, S. Mitra, Sci. Rep. 2015, 5, 12571.
- 39X. Wang, Z. Guan, Y. Li, Z. Wang, L. Chen, Nanoscale 2015, 7, 637–641.
- 40Y. Li, Y. Liang, F. C. Robles Hernandez, H. Deog Yoo, Q. An, Y. Yao, Nano Energy 2015, 15, 453–461.
- 41Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang, T.-W. Ng, H.-T. Xue, Y. Denis, W. Zhang, C.-S. Lee, Nano Energy 2016, 22, 27–37.
- 42
- 42aM. Walter, T. Zünd, M. V. Kovalenko, Nanoscale 2015, 7, 9158–9163;
- 42bA. Douglas, R. Carter, L. Oakes, K. Share, A. P. Cohn, C. L. Pint, ACS Nano 2015, 9, 11156–11165;
- 42cA. Kitajou, J. Yamaguchi, S. Hara, S. Okada, J. Power Sources 2014, 247, 391–395;
- 42dY. Zhu, L. Suo, T. Gao, X. Fan, F. Han, C. Wang, Electrochem. Commun. 2015, 54, 18–22;
- 42eK. Zhang, M. Park, L. Zhou, G. H. Lee, J. Shin, Z. Hu, S. L. Chou, J. Chen, Y. M. Kang, Angew. Chem. Int. Ed. 2016, 55, 12822–12826; Angew. Chem. 2016, 128, 13014–13018;
- 42fX. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Nano Res. 2016, 9, 198–206;
- 42gZ. Li, W. Feng, Y. Lin, X. Liu, H. Fei, RSC Adv. 2016, 6, 70632–70637;
- 42hY. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, J. Mater. Chem. A 2015, 3, 6787–6791;
- 42iQ. Zhou, L. Liu, Z. Huang, L. Yi, X. Wang, G. Cao, J. Mater. Chem. A 2016, 4, 5505–5516.
- 43
- 43aX. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, Chem. Asian J. 2014, 9, 1611–1617;
- 43bW. Sun, X. Rui, D. Yang, Z. Sun, B. Li, W. Zhang, Y. Zong, S. Madhavi, S. Dou, Q. Yan, ACS Nano 2015, 9, 11371–11381;
- 43cJ. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A. C. Mignerey, C. Wang, ACS Appl. Mater. Interfaces 2015, 7, 11476–11481;
- 43dY. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Nanoscale 2015, 7, 1325–1332.
- 44Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Adv. Funct. Mater. 2015, 25, 481–489.
- 45Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Energy Environ. Sci. 2016, 9, 1430–1438.
- 46
- 46aL. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, J. Power Sources 2015, 293, 784–789;
- 46bL. Wu, H. Lu, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, J. Mater. Chem. A 2014, 2, 16424–16428.
- 47T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, ACS Nano 2014, 8, 8323–8333.
- 48Y. Denis, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, Nat. Commun. 2013, 4, 3922.
- 49H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 19362–19369.
- 50X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J.-H. Wang, M. Liu, ACS Nano 2016, 10, 10953–10959.
- 51Z. Z. Pan, Y. Yan, N. Cui, J. C. Xie, Y. B. Zhang, W. S. Mu, C. Hao, Adv. Mater. Interfaces 2018, 5, 1701481.
- 52X. Lu, G. Xia, J. P. Lemmon, Z. Yang, J. Power Sources 2010, 195, 2431–2442.
- 53C.-W. Park, J.-H. Ahn, H.-S. Ryu, K.-W. Kim, H.-J. Ahn, Electrochem. Solid-State Lett. 2006, 9, A 123–A125.
- 54
- 54aD.-J. Lee, J.-W. Park, I. Hasa, Y.-K. Sun, B. Scrosati, J. Hassoun, J. Mater. Chem. A 2013, 1, 5256–5261;
- 54bY.-M. Chen, W. Liang, S. Li, F. Zou, S. M. Bhaway, Z. Qiang, M. Gao, B. D. Vogt, Y. Zhu, J. Mater. Chem. A 2016, 4, 12471–12478;
- 54cS. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722;
- 54dY. S. Yun, M. Y. Song, N. R. Kim, H.-J. Jin, Synth. Met. 2015, 210, 357–362.
- 55Y.-X. Wang, J. Yang, W. Lai, S.-L. Chou, Q.-F. Gu, H. K. Liu, D. Zhao, S. X. Dou, J. Am. Chem. Soc. 2016, 138, 16576–16579.
- 56S. Xin, Y. X. Yin, Y. G. Guo, L. J. Wan, Adv. Mater. 2014, 26, 1261–1265.
- 57
- 57aM. Kohl, F. Borrmann, H. Althues, S. Kaskel, Adv. Energy Mater. 2016, 6, 1502185;
- 57bI. Kim, J.-Y. Park, C. H. Kim, J.-W. Park, J.-P. Ahn, J.-H. Ahn, K.-W. Kim, H.-J. Ahn, J. Power Sources 2016, 301, 332–337.
- 58T. H. Hwang, D. S. Jung, J.-S. Kim, B. G. Kim, J. W. Choi, Nano Lett. 2013, 13, 4532–4538.
- 59I. Kim, C. H. Kim, S. hwa Choi, J.-P. Ahn, J.-H. Ahn, K.-W. Kim, E. J. Cairns, H.-J. Ahn, J. Power Sources 2016, 307, 31–37.
- 60
- 60aX. Yu, A. Manthiram, J. Phys. Chem. Lett. 2014, 5, 1943–1947;
- 60bX. Yu, A. Manthiram, Chem. Eur. J. 2015, 21, 4233–4237.
- 61J. Liu, X. Zheng, Z. Shi, S. Zhang, Ionics 2014, 20, 659–664.
- 62K. Sun, D. Su, Q. Zhang, D. C. Bock, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, H. Gan, J. Electrochem. Soc. 2015, 162, A 2834–A2839.
- 63L. Chen, J.-D. Liu, S.-Q. Zhang, J. Inorg. Mater. 2013, 10, 014.
- 64Y. Lu, X. Li, J. Liang, L. Hu, Y. Zhu, Y. Qian, Nanoscale 2016, 8, 17616–17622.
- 65Y.-S. Su, A. Manthiram, J. Power Sources 2014, 270, 101–105.
- 66Q. Pang, D. Kundu, L. F. Nazar, Mater. Horiz. 2016, 3, 130–136.
- 67S. S. Zhang, D. T. Tran, J. Mater. Chem. A 2016, 4, 4371–4374.
- 68Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519–527.
- 69X. Li, L. Chu, Y. Wang, L. Pan, Mater. Sci. Eng. B 2016, 205, 46–54.
- 70G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.
- 71S. Zheng, P. Han, Z. Han, P. Li, H. Zhang, J. Yang, Adv. Energy Mater. 2014, 4, 1400226.
- 72B.-W. Zhang, Y.-D. Liu, Y.-X. Wang, L. Zhang, M.-Z. Chen, W.-H. Lai, S.-L. Chou, H.-K. Liu, S.-X. Dou, ACS Appl. Mater. Interfaces 2017, 9, 24446–24450.
- 73B. W. Zhang, T. Sheng, Y. X. Wang, S. Chou, K. Davey, S. X. Dou, S. Z. Qiao, Angew. Chem. Int. Ed. 2019, 58, 1484–1488; Angew. Chem. 2019, 131, 1498–1502.
- 74A. Ghosh, S. Shukla, M. Monisha, A. Kumar, B. Lochab, S. Mitra, ACS Energy Lett. 2017, 2, 2478–2485.
- 75H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han, F. Zhao, J. Deng, T. Wu, Y. Li, J. Lu, Proc. Natl. Acad. Sci. USA 2017, 114, 13091–13096.
- 76D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 10168–10172; Angew. Chem. 2018, 130, 10325–10329.
- 77
- 77aX.-m. Zhao, Q. Zhu, S.-d. Xu, L. Chen, Z.-j. Zuo, X.-m. Wang, S.-b. Liu, D. Zhang, J. Electroanal. Chem. 2019, 832, 392–398;
- 77bX. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Nat. Commun. 2018, 9, 3870.
Citing Literature
December 16, 2019
Pages 18324-18337