Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein
Inha Cho
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorDr. Christopher K. Prier
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Current address: Merck Research Laboratories, Merck & Co., P.O. Box 2000, Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Zhi-Jun Jia
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorRuijie K. Zhang
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorDr. Tamás Görbe
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Current address: School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Science for Life Laboratory 23, Tomtebodavägen, 17165 Solna, Sweden
Search for more papers by this authorCorresponding Author
Prof. Frances H. Arnold
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorInha Cho
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorDr. Christopher K. Prier
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Current address: Merck Research Laboratories, Merck & Co., P.O. Box 2000, Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Zhi-Jun Jia
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorRuijie K. Zhang
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorDr. Tamás Görbe
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Current address: School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Science for Life Laboratory 23, Tomtebodavägen, 17165 Solna, Sweden
Search for more papers by this authorCorresponding Author
Prof. Frances H. Arnold
Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125 USA
Search for more papers by this authorGraphical Abstract
Abstract
Chiral 1,2-amino alcohols are widely represented in biologically active compounds from neurotransmitters to antivirals. While many synthetic methods have been developed for accessing amino alcohols, the direct aminohydroxylation of alkenes to unprotected, enantioenriched amino alcohols remains a challenge. Using directed evolution, we have engineered a hemoprotein biocatalyst based on a thermostable cytochrome c that directly transforms alkenes to amino alcohols with high enantioselectivity (up to 2500 TTN and 90 % ee) under anaerobic conditions with O-pivaloylhydroxylamine as an aminating reagent. The reaction is proposed to proceed via a reactive iron-nitrogen species generated in the enzyme active site, enabling tuning of the catalyst's activity and selectivity by protein engineering.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201812968-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. C. Bergmeier, Tetrahedron 2000, 56, 2561–2576.
- 2D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96, 835–876.
- 3
- 3aT. Sehl, H. C. Hailes, J. M. Ward, R. Wardenga, E. Von Lieres, H. Offermann, R. Westphal, M. Pohl, D. Rother, Angew. Chem. Int. Ed. 2013, 52, 6772–6775; Angew. Chem. 2013, 125, 6904–6908;
- 3bJ. Rehdorf, M. D. Mihovilovic, U. T. Bornscheuer, Angew. Chem. Int. Ed. 2010, 49, 4506–4508; Angew. Chem. 2010, 122, 4609–4611;
- 3cG. Hasnaoui-Dijoux, M. M. Elenkov, J. H. L. Spelberg, B. Hauer, D. B. Janssen, ChemBioChem 2008, 9, 1048–1051.
- 4S. Wu, Y. Zhou, T. Wang, H.-P. Too, D. I. C. Wang, Z. Li, Nat. Commun. 2016, 7, 11917–11929.
- 5
- 5aT. J. Donohoe, C. K. A. Callens, A. Flores, A. R. Lacy, A. H. Rathi, Chem. Eur. J. 2011, 17, 58–76;
- 5bP. H. Fuller, J.-W. Kim, S. R. Chemler, J. Am. Chem. Soc. 2008, 130, 17638–17639;
- 5cD. J. Michaelis, K. S. Williamson, T. P. Yoon, Tetrahedron 2009, 65, 5118–5124;
- 5dK. S. Williamson, T. P. Yoon, J. Am. Chem. Soc. 2012, 134, 12370–12373;
- 5eU. Farid, T. Wirth, Angew. Chem. Int. Ed. 2012, 51, 3462–3465; Angew. Chem. 2012, 124, 3518–3522;
- 5fG.-S. Liu, Y.-Q. Zhang, Y.-A. Yuan, H. Xu, J. Am. Chem. Soc. 2013, 135, 3343–3346;
- 5gD.-F. Lu, C.-L. Zhu, Z.-X. Jia, H. Xu, J. Am. Chem. Soc. 2014, 136, 13186–13189.
- 6
- 6aK. B. Sharpless, D. W. Patrick, L. K. Truesdale, S. A. Biller, J. Am. Chem. Soc. 1975, 97, 2305–2307;
- 6bG. Li, H. T. Chang, K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 1996, 35, 451–453; Angew. Chem. 1996, 108, 449–452;
- 6cJ. A. Bodkin, M. D. McLeod, J. Chem. Soc. Perkin Trans. 1 2002, 2733–2746;
- 6dD. Nilov, O. Reiser, Adv. Synth. Catal. 2002, 344, 1169–1173.
- 7
- 7aR. Vyas, G.-Y. Gao, J. D. Harden, X. P. Zhang, Org. Lett. 2004, 6, 1907–1910;
- 7bY. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199–8256;
- 7cL. Degennaro, P. Trinchera, R. Luisi, Chem. Rev. 2014, 114, 7881–7929;
- 7dP. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905–2920.
- 8J. L. Jat, M. P. Paudyal, H. Gao, Q.-L. Xu, M. Yousufuddin, D. Devarajan, D. H. Ess, L. Kürti, J. R. Falck, Science 2014, 343, 61–65.
- 9L. Legnani, B. Morandi, Angew. Chem. Int. Ed. 2016, 55, 2248–2253; Angew. Chem. 2016, 128, 2288–2292.
- 10
- 10aZ. Ma, Z. Zhou, L. Kürti, Angew. Chem. Int. Ed. 2017, 56, 9886–9890; Angew. Chem. 2017, 129, 10018–10022;
- 10bL. Legnani, G. P. Cerai, B. Morandi, ACS Catal. 2016, 6, 8162–8165;
- 10cS. Sabir, G. Kumar, J. L. Jat, Org. Biomol. Chem. 2018, 16, 3314–3327;
- 10dL. Legnani, G. Prina-Cerai, T. Delcaillau, S. Willems, B. Morandi, Science 2018, 362, 434–439.
- 11
- 11aJ. A. McIntosh, P. S. Coelho, C. C. Farwell, Z. J. Wang, J. C. Lewis, T. R. Brown, F. H. Arnold, Angew. Chem. Int. Ed. 2013, 52, 9309–9312; Angew. Chem. 2013, 125, 9479–9482;
- 11bC. K. Prier, R. K. Zhang, A. R. Buller, S. Brinkmann-Chen, F. H. Arnold, Nat. Chem. 2017, 9, 629–634;
- 11cT. K. Hyster, C. C. Farwell, A. R. Buller, J. A. McIntosh, F. H. Arnold, J. Am. Chem. Soc. 2014, 136, 15505–15508;
- 11dC. C. Farwell, R. K. Zhang, J. A. McIntosh, T. K. Hyster, F. H. Arnold, ACS Cent. Sci. 2015, 1, 89–93;
- 11eR. Singh, M. Bordeaux, R. Fasan, ACS Catal. 2014, 4, 546–552;
- 11fM. Bordeaux, R. Singh, R. Fasan, Bioorg. Med. Chem. 2014, 22, 5697–5704.
- 12R. Singh, J. N. Kolev, P. A. Sutera, R. Fasan, ACS Catal. 2015, 5, 1685–1691.
- 13P. Dydio, H. M. Key, H. Hayashi, D. S. Clark, J. F. Hartwig, J. Am. Chem. Soc. 2017, 139, 1750–1753.
- 14H. Tsutsumi, Y. Katsuyama, M. Izumikawa, M. Takagi, M. Fujie, N. Satoh, K. Syin-ya, Y. Ohnishi, J. Am. Chem. Soc. 2018, 140, 6631–6639.
- 15S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354, 1048–1051.
- 16R. D. Lewis, M. Garcia-Borràs, M. J. Chalkley, A. R. Buller, K. N. Houk, S. B. J. Kan, F. H. Arnold, Proc. Natl. Acad. Sci. USA 2018, 115, 7308–7313.
- 17M. Stelter, A. M. P. Melo, M. M. Pereira, C. M. Gomes, G. O. Hreggvidsson, S. Hjorleifsdottir, L. M. Saraiva, M. Teixeira, M. Archer, Biochemistry 2008, 47, 11953–11963.
- 18
- 18aA. I. Olivos Suarez, V. Lyaskovskyy, J. N. H. Reek, J. I. van der Vlugt, B. de Bruin, Angew. Chem. Int. Ed. 2013, 52, 12510–12529; Angew. Chem. 2013, 125, 12740–12760;
- 18bM. Goswami, V. Lyaskovskyy, S. R. Domingos, W. J. Buma, S. Woutersen, O. Troeppner, I. Ivanović-Burmazović, H. Lu, X. Cui, X. P. Zhang, E. J. Reijerse, S. DeBeer, M. M. van Schooneveld, F. F. Pfaff, K. Ray, B. de Bruin, J. Am. Chem. Soc. 2015, 137, 5468–5479;
- 18cE. T. Hennessy, T. A. Betley, Science 2013, 340, 591–595.