All-Inorganic CsPb1−xGexI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance
Corresponding Author
Fu Yang
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDaisuke Hirotani
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Gaurav Kapil
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Muhammad Akmal Kamarudin
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Chi Huey Ng
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Yaohong Zhang
Department Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
Search for more papers by this authorProf. Dr. Qing Shen
Department Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shuzi Hayase
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorCorresponding Author
Fu Yang
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDaisuke Hirotani
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Gaurav Kapil
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Muhammad Akmal Kamarudin
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Chi Huey Ng
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorDr. Yaohong Zhang
Department Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
Search for more papers by this authorProf. Dr. Qing Shen
Department Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shuzi Hayase
Graduate School of Life Science and Systems Engineering Institution, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196 Japan
Search for more papers by this authorGraphical Abstract
Germanium is for the first time reported to incorporate in all-inorganic CsPbI2Br perovskite and lead to enhanced phase stability and photovoltaic performance. A large VOC of up to 1.34 V and a high PCE of 10.8 % were achieved by planar perovskite solar cells (PSCs) that were prepared in an uncontrolled humid air atmosphere without a glovebox, which are remarkable records for the CsPbI2Br PSCs.
Abstract
Compared with organic-inorganic perovskites, all-inorganic cesium-based perovskites without volatile organic compounds have gained extensive interests because of the high thermal stability. However, they have a problem on phase transition from cubic phase (active for photo-electric conversion) to orthorhombic phase (inactive for photo-electric conversion) at room temperature, which has hindered further progress. Herein, novel inorganic CsPb1−xGexI2Br perovskites were prepared in humid ambient atmosphere without a glovebox. The phase stability of the all-inorganic perovskite was effectively enhanced after germanium addition. In addition, the highest power conversion efficiency of 10.8 % with high open-circuit voltage (VOC) of 1.27 V in a planar solar cell based on CsPb0.8Ge0.2I2Br perovskite was achieved. Furthermore, the highest VOC up to 1.34 V was obtained by CsPb0.7Ge0.3I2Br perovskite, which is a remarkable record in the field of all-inorganic perovskite solar cells. More importantly, all the photovoltaic parameters of CsPb0.8Ge0.2I2Br perovskite solar cells showed nearly no decay after 7 h measurement in 50–60 % relative humidity without encapsulation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201807270-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647;
- 1bT. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, Nat. Commun. 2013, 4, 2885;
- 1cW. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510–519.
- 2
- 2aA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051;
- 2bW. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376–1379.
- 3
- 3aJ. S. Manser, M. I. Saidaminov, J. A. Christians, O. M. Bakr, P. V. Kamat, Acc. Chem. Res. 2016, 49, 330–338;
- 3bS. Wang, Y. Jiang, E. J. Juarez-Perez, L. K. Ono, Y. Qi, Nat. Energy 2017, 2, 16195;
- 3cH. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, Nature 2016, 536, 312.
- 4
- 4aJ. Duan, T. Hu, Y. Zhao, B. He, Q. Tang, Angew. Chem. Int. Ed. 2018, 57, 5746–5749; Angew. Chem. 2018, 130, 5848–5851;
- 4bJ. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 14009–14012;
- 4cN. Li, Z. Zhu, J. Li, A. K. Y. Jen, L. Wang, Adv. Energy Mater. 2018, 8, 1800525.
- 5
- 5aG. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688–19695;
- 5bL. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 6J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. Int. Ed. 2018, 57, 3787–3791; Angew. Chem. 2018, 130, 3849–3853.
- 7
- 7aC. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 2018, 140, 3825–3828;
- 7bN. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897;
- 7cA. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92–95;
- 7dS. Sharma, N. Weiden, A. Weiss, Z. Phys. Chem. 1992, 175, 63–80.
- 8
- 8aB. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y.-C. Joo, K. S. Hong, Energy Environ. Sci. 2015, 8, 916–921;
- 8bS. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, H. J. Snaith, Nano Lett. 2014, 14, 5561–5568.
- 9S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, ACS Appl. Mater. Interfaces 2018, 10, 3750–3760.
- 10
- 10aZ. Zeng, J. Zhang, X. Gan, H. Sun, M. Shang, D. Hou, C. Lu, R. Chen, Y. Zhu, L. Han, Adv. Energy Mater. 2018, 8, 1801050;
- 10bL. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip, Adv. Mater. 2018, 30, 1802509;
- 10cD. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, S. F. Liu, ACS Energy Lett. 2018, 3, 970–978;
- 10dJ. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, Nano Lett. 2017, 17, 2028–2033;
- 10eC. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, A. Ho-Baillie, ACS Energy Lett. 2017, 2, 2319–2325.
- 11J. Rödel, W. Jo, K. T. Seifert, E. M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 2009, 92, 1153–1177.
- 12F. Yang, G. Kapil, P. Zhang, Z. Hu, M. A. Kamarudin, T. Ma, S. Hayase, ACS Appl. Mater. Interfaces 2018, 10, 16482–16489.
- 13
- 13aR. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, Adv. Energy Mater. 2016, 6, 1502458;
- 13bC. Y. Chen, H. Y. Lin, K. M. Chiang, W. L. Tsai, Y. C. Huang, C. S. Tsao, H. W. Lin, Adv. Mater. 2017, 29, 1605290;
- 13cW. Li, M. U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A. R. Pascoe, J. Lu, L. Jiang, Y. Chen, F. Huang, Adv. Energy Mater. 2017, 7, 1700946.
- 14
- 14aM. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energy Environ. Sci. 2016, 9, 1989–1997;
- 14bW. Xu, L. Zheng, X. Zhang, Y. Cao, T. Meng, D. Wu, L. Liu, W. Hu, X. Gong, Adv. Energy Mater. 2018, 8, 1703178.
- 15
- 15aH. Shen, T. Duong, Y. Wu, J. Peng, D. Jacobs, N. Wu, K. Weber, T. White, K. Catchpole, Sci. Technol. Adv. Mater. 2018, 19, 53–75;
- 15bR. Fan, N. Zhou, L. Zhang, R. Yang, Y. Meng, L. Li, T. Guo, Y. Chen, Z. Xu, G. Zheng, Sol. RRL 2017, 1, 1700149;
- 15cT. Leijtens, K. A. Bush, R. Prasanna, M. D. McGehee, Nat. Energy 2018, https://doi.org/10.1038/s41560-018-0190-4;
- 15dN. N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y. B. Cheng, U. Bach, Adv. Energy Mater. 2017, 7, 1602761;
- 15eG. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, Science 2016, 354, 861–865.
- 16F. Yang, M. A. Kamarudin, P. Zhang, G. Kapil, T. Ma, S. Hayase, ChemSusChem 2018, 11, 2348–2357.