Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction
Dr. Zhi Cao
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorSamson B. Zacate
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
These authors contributed equally to this work.
Search for more papers by this authorXiaodong Sun
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
These authors contributed equally to this work.
Search for more papers by this authorJinjia Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorElizabeth M. Hale
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorWilliam P. Carson
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorSam B. Tyndall
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorDr. Jun Xu
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorDr. Xingwu Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorDr. Xingchen Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorDr. Chang Song
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorJheng-hua Luo
Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
Search for more papers by this authorProf. Mu-Jeng Cheng
Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
Search for more papers by this authorCorresponding Author
Dr. Xiaodong Wen
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorCorresponding Author
Prof. Wei Liu
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorDr. Zhi Cao
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorSamson B. Zacate
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
These authors contributed equally to this work.
Search for more papers by this authorXiaodong Sun
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
These authors contributed equally to this work.
Search for more papers by this authorJinjia Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorElizabeth M. Hale
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorWilliam P. Carson
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorSam B. Tyndall
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorDr. Jun Xu
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorDr. Xingwu Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorDr. Xingchen Liu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorDr. Chang Song
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorJheng-hua Luo
Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
Search for more papers by this authorProf. Mu-Jeng Cheng
Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
Search for more papers by this authorCorresponding Author
Dr. Xiaodong Wen
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P.R.China
National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400 P.R.China
Search for more papers by this authorCorresponding Author
Prof. Wei Liu
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056 USA
Search for more papers by this authorGraphical Abstract
Gold nanoparticles functionalized with a chelating tetradentate porphyrin ligand exhibit significantly improved catalytic activity and stability for electrochemical CO2 reduction. The inherent structural and electronic tunability of these nanoparticles offers an unrivaled degree of control over their reactivity.
Abstract
Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110-fold enhancement compared to the oleylamine-coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93 %. These catalysts also show excellent stability without deactivation (<5 % productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201805696-sup-0001-misc_information.pdf16.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. B. Gray, Nat. Chem. 2009, 1, 7.
- 2C. Costentin, M. Robert, J.-M. Saveant, Chem. Soc. Rev. 2013, 42, 2423–2436.
- 3S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68.
- 4M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, Science 2016, 353, 467–470.
- 5S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213.
- 6N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.
- 7S. Zhang, P. Kang, M. Bakir, A. M. Lapides, C. J. Dares, T. J. Meyer, Proc. Natl. Acad. Sci. USA 2015, 112, 15809–15814.
- 8M. R. Singh, E. L. Clark, A. T. Bell, Proc. Natl. Acad. Sci. USA 2015, 112, 6111–6118.
- 9H. Xiao, W. A. Goddard, T. Cheng, Y. Liu, Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.
- 10N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320.
- 11X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, J. K. Nørskov, Nat. Commun. 2017, 8, 15438.
- 12J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal. 2017, 7, 4822–4827.
- 13D. Kim, K. K. Sakimoto, D. Hong, P. Yang, Angew. Chem. Int. Ed. 2015, 54, 3259–3266; Angew. Chem. 2015, 127, 3309–3316.
- 14J. He, K. E. Dettelbach, A. Huang, C. P. Berlinguette, Angew. Chem. Int. Ed. 2017, 56, 16579–16582; Angew. Chem. 2017, 129, 16806–16809.
- 15A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H. Huang, J. W. Ager, R. Buonsanti, Angew. Chem. Int. Ed. 2016, 55, 5789–5792; Angew. Chem. 2016, 128, 5883–5886.
- 16H. Wang, J. Jia, P. Song, Q. Wang, D. Li, S. Min, C. Qian, L. Wang, Y. F. Li, C. Ma, T. Wu, J. Yuan, M. Antonietti, G. A. Ozin, Angew. Chem. Int. Ed. 2017, 56, 7847–7852; Angew. Chem. 2017, 129, 7955–7960.
- 17Z. Weng, X. Zhang, Y. Wu, S. Huo, J. Jiang, W. Liu, G. He, Y. Liang, H. Wang, Angew. Chem. Int. Ed. 2017, 56, 13135–13139; Angew. Chem. 2017, 129, 13315–13319.
- 18L. Zhang, Z. J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2017, 56, 11326–11353; Angew. Chem. 2017, 129, 11482–11511.
- 19T. Cheng, Y. F. Huang, H. Xiao, W. A. Goddard, J. Phys. Chem. Lett. 2017, 8, 3317–3320.
- 20T. Cheng, H. Xiao, W. A. Goddard, J. Am. Chem. Soc. 2016, 138, 13802–13805.
- 21R. G. Mariano, K. McKelvey, H. S. White, M. W. Kanan, Science 2017, 358, 1187–1191.
- 22K. Sun, T. Cheng, L. N. Wu, Y. F. Hu, J. G. Zhou, A. Maclennan, Z. H. Jiang, Y. Z. Gao, W. A. Goddard, Z. J. Wang, J. Am. Chem. Soc. 2017, 139, 15608–15611.
- 23Y. Yoon, A. S. Hall, Y. Surendranath, Angew. Chem. Int. Ed. 2016, 55, 15282–15286; Angew. Chem. 2016, 128, 15508–15512.
- 24M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature 2016, 537, 382–386.
- 25D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Nat. Commun. 2014, 5, 4948.
- 26Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242.
- 27W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833–16836.
- 28Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2016, 138, 8120–8125.
- 29Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 19969–19972.
- 30D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288–4291.
- 31K. Manthiram, B. J. Beberwyck, A. P. Alivisatos, J. Am. Chem. Soc. 2014, 136, 13319–13325.
- 32R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978–6986.
- 33C. Rogers, W. S. Perkins, G. Veber, T. E. Williams, R. R. Cloke, F. R. Fischer, J. Am. Chem. Soc. 2017, 139, 4052–4061.
- 34R. Kortlever, I. Peters, S. Koper, M. T. Koper, ACS Catal. 2015, 5, 3916–3923.
- 35W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2014, 136, 16132–16135.
- 36J. Ohyama, Y. Hitomi, Y. Higuchi, T. Tanaka, Top. Catal. 2009, 52, 852–859.
- 37N. G. Khlebtsov, Anal. Chem. 2008, 80, 6620–6625.
- 38A. M. M. El-Assar, C. P. Nash, L. L. Ingraham, Biochemistry 1982, 21, 1972–1976.
- 39K. Masayuki, T. Hirokazu, T. Toshiharu, Angew. Chem. Int. Ed. 2008, 47, 307–310; Angew. Chem. 2008, 120, 313–316.
- 40S. Govindaraju, S. R. Ankireddy, B. Viswanath, J. Kim, K. Yun, Sci. Rep. 2017, 7, 40298.
- 41M. Gong, Z. Cao, W. Liu, E. M. Nichols, P. T. Smith, J. S. Derrick, Y.-S. Liu, J. Liu, X. Wen, C. J. Chang, ACS Cent. Sci. 2017, 3, 1032–1040.
- 42Z. Cao, J. S. Derrick, J. Xu, R. Gao, M. Gong, E. M. Nichols, P. T. Smith, X. W. Liu, X. D. Wen, C. Coperet, C. J. Chang, Angew. Chem. Int. Ed. 2018, 57, 4981–4985; Angew. Chem. 2018, 130, 5075–5079.
- 43Z. J. Wang, L. N. Wu, K. Sun, T. Chen, Z. H. Jiang, T. Cheng, W. A. Goddard, J. Phys. Chem. Lett. 2018, 9, 3057–3061.